Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. Hutchinson is active.

Publication


Featured researches published by John H. Hutchinson.


Journal of Pharmacology and Experimental Therapeutics | 2011

Pharmacokinetic and Pharmacodynamic Characterization of an Oral Lysophosphatidic Acid Type 1 Receptor-Selective Antagonist

James S. Swaney; Charles Chapman; Lucia Correa; Karin Stebbins; Alex R. Broadhead; Gretchen Bain; Angelina M. Santini; Janice Darlington; Christopher King; Chris Baccei; Catherine Lee; Timothy Parr; Jeffrey Roger Roppe; Thomas Jon Seiders; Jeannie Ziff; Peppi Prasit; John H. Hutchinson; Jilly F. Evans; Daniel S. Lorrain

Lysophosphatidic acid (LPA) is a bioactive phospholipid that signals through a family of at least six G protein-coupled receptors designated LPA1–6. LPA type 1 receptor (LPA1) exhibits widespread tissue distribution and regulates a variety of physiological and pathological cellular functions. Here, we evaluated the in vitro pharmacology, pharmacokinetic, and pharmacodynamic properties of the LPA1-selective antagonist AM095 (sodium, {4′-[3-methyl-4-((R)-1-phenyl-ethoxycarbonylamino)-isoxazol-5-yl]-biphenyl-4-yl}-acetate) and assessed the effects of AM095 in rodent models of lung and kidney fibrosis and dermal wound healing. In vitro, AM095 was a potent LPA1 receptor antagonist because it inhibited GTPγS binding to Chinese hamster ovary (CHO) cell membranes overexpressing recombinant human or mouse LPA1 with IC50 values of 0.98 and 0.73 μM, respectively, and exhibited no LPA1 agonism. In functional assays, AM095 inhibited LPA-driven chemotaxis of CHO cells overexpressing mouse LPA1 (IC50 = 778 nM) and human A2058 melanoma cells (IC50 = 233 nM). In vivo, we demonstrated that AM095: 1) had high oral bioavailability and a moderate half-life and was well tolerated at the doses tested in rats and dogs after oral and intravenous dosing, 2) dose-dependently reduced LPA-stimulated histamine release, 3) attenuated bleomycin-induced increases in collagen, protein, and inflammatory cell infiltration in bronchalveolar lavage fluid, and 4) decreased kidney fibrosis in a mouse unilateral ureteral obstruction model. Despite its antifibrotic activity, AM095 had no effect on normal wound healing after incisional and excisional wounding in rats. These data demonstrate that AM095 is an LPA1 receptor antagonist with good oral exposure and antifibrotic activity in rodent models.


European Journal of Pharmacology | 2010

Therapeutic efficacy of AM156, a novel prostanoid DP2 receptor antagonist, in murine models of allergic rhinitis and house dust mite-induced pulmonary inflammation.

Karin J. Stebbins; Alex R. Broadhead; Lucia Correa; Jill Melissa Scott; Yen Pham Truong; Brian Andrew Stearns; John H. Hutchinson; Peppi Prasit; Jilly F. Evans; Daniel S. Lorrain

Prostaglandin D(2) (PGD(2)) is derived from arachidonic acid and binds with high affinity to the G protein coupled receptors prostanoid DP(1) and DP(2). Interaction with DP(2) results in cell chemotaxis, eosinophil degranulation, eosinophil shape change, adhesion molecule upregulation and Th2 cytokine production. In allergic rhinitis and allergic asthma PGD(2) is released from mast cells in response to allergen challenge and may trigger symptoms such as sneezing, rhinorrhea, pruritus, mucus hypersecretion and pulmonary inflammation. In Japan, ramatroban, a dual prostanoid DP(2)/prostanoid TP receptor antagonist, is marketed for allergic rhinitis while selective DP(2) antagonists are currently under investigation as therapeutics for asthma and allergic rhinitis. In the studies described herein, we investigated the efficacy of AM156, a novel selective prostanoid DP(2) receptor antagonist, in murine models of allergic rhinitis and asthma. AM156 inhibited sneezing and nasal rubs in a model of allergic rhinitis. AM156 inhibited pulmonary inflammation and mucus hypersecretion induced by chronic inhalation of house dust mite. These results suggest that selective prostanoid DP(2) receptor antagonists such as AM156 may provide beneficial effects for the clinical treatment of diseases such as allergic rhinitis and asthma.


Journal of Pharmacology and Experimental Therapeutics | 2010

Pharmacological Blockade of the DP2 Receptor Inhibits Cigarette Smoke-Induced Inflammation, Mucus Cell Metaplasia and Epithelial Hyperplasia in the Mouse Lung

Karin J. Stebbins; Alex R. Broadhead; Christopher Baccei; Jill Melissa Scott; Yen Pham Truong; Heather Renee Coate; Nicholas Simon Stock; Angelina M. Santini; Patrick Fagan; Patricia Prodanovich; Gretchen Bain; Brian Andrew Stearns; Christopher King; John H. Hutchinson; Peppi Prasit; Jilly F. Evans; Daniel S. Lorrain

Prostaglandin D2 (PGD2) is one of a family of biologically active lipids derived from arachidonic acid via the action of COX-1 and COX-2. PGD2 is released from mast cells and binds primarily to two G protein-coupled receptors, namely DP1 and DP2, the latter also known as chemoattractant receptor-homologous molecule expressed on Th2 cells. DP2 is predominantly expressed on eosinophils, Th2 cells, and basophils, but it is also expressed to a lesser extent on monocytes, mast cells, and epithelial cells. Interaction of PGD2 and its active metabolites with DP2 results in cellular chemotaxis, degranulation, up-regulation of adhesion molecules, and cytokine production. Chronic obstructive pulmonary disease (COPD) is a chronic progressive inflammatory disease characterized by elevated lung neutrophils, macrophages, and CD8+ T lymphocytes and mucus hypersecretion. Cigarette smoke contributes to the etiology of COPD and was used here as a provoking agent in a murine model of COPD. In an acute model, {2′-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4′-trifluoro-methyl-biphenyl-3-yl}-acetic acid, sodium salt (AM156) and (5-{2-[(benzoyloxycarbonyl-ethyl-amino)-methyl]-4-trifluoromethyl-phenyl}-pyridin-3-yl)-acetic acid, sodium salt) (AM206), potent DP2 receptor antagonists, dose-dependently inhibited influx of neutrophils and lymphocytes to smoke-exposed airways. In a subchronic model, AM156 and AM206 inhibited neutrophil and lymphocyte trafficking to the airways. Furthermore, AM156 and AM206 treatment inhibited mucus cell metaplasia and prevented the thickening of the airway epithelial layer induced by cigarette smoke. These data suggest that DP2 receptor antagonism may represent a novel therapy for COPD or other conditions characterized by neutrophil influx, mucus hypersecretion, and airway remodeling.


Bioorganic & Medicinal Chemistry Letters | 2009

Novel tricyclic antagonists of the prostaglandin D2 receptor DP2 with efficacy in a murine model of allergic rhinitis

Brian Andrew Stearns; Christopher Baccei; Gretchen Bain; Alex R. Broadhead; Ryan Clark; Heather Renee Coate; Jilly F. Evans; Patrick Fagan; John H. Hutchinson; Christopher D. King; Catherine Lee; Daniel S. Lorrain; Peppi Prasit; Pat Prodanovich; Angelina M. Santini; Jill Melissa Scott; Nicholas Simon Stock; Yen Pham Truong

The synthesis of a series of tricyclic antagonists for the prostaglandin D(2) receptor DP2 (CRTH2) is disclosed. The activities of the compounds were evaluated in a human DP2 binding assay and a human whole blood eosinophil shape change assay. Potential metabolic liabilities of the compounds were addressed through in vitro CYP studies. The lead compound was demonstrated to have efficacy in a mouse model of allergic rhinitis following oral dosing.


Journal of Medicinal Chemistry | 2009

5-lipoxygenase-activating protein inhibitors: development of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103).

John H. Hutchinson; Yiwei Li; Jeannie M. Arruda; Christopher Baccei; Gretchen Bain; Charles Chapman; Lucia Correa; Janice Darlington; Christopher King; Catherine Lee; Dan Lorrain; Pat Prodanovich; Haojing Rong; Angelina M. Santini; Nicholas Simon Stock; Peppi Prasit; Jilly F. Evans

The potent and selective 5-lipoxygenase-activating protein leukotriene synthesis inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (11j) is described. Lead optimization was designed to afford compounds with superior in vitro and in vivo inhibition of leukotriene synthesis in addition to having excellent pharmacokinetics and safety in rats and dogs. The key structural features of these new compounds are incorporation of heterocycles on the indole N-benzyl substituent and replacement of the quinoline group resulting in compounds with excellent in vitro and in vivo activities, superior pharmacokinetics, and improved physical properties. The methoxypyridine derivative 11j has an IC(50) of 4.2 nM in a 5-lipoxygenase-activating protein (FLAP) binding assay, an IC(50) of 349 nM in the human blood LTB(4) inhibition assay, and is efficacious in a murine ovalbumin model of allergen-induced asthma. Compound 11j was selected for clinical development and has successfully completed phase 1 trials in healthy volunteers.


Journal of Medicinal Chemistry | 2011

5-Lipoxygenase-Activating Protein (FLAP) Inhibitors. Part 4: Development of 3-[3-tert-Butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic Acid (AM803), a Potent, Oral, Once Daily FLAP Inhibitor

Nicholas Simon Stock; Gretchen Bain; Jasmine Zunic; Yiwei Li; Jeannie Ziff; Jeffrey Roger Roppe; Angelina M. Santini; Janice Darlington; Pat Prodanovich; Christopher King; Christopher Baccei; Catherine Lee; Haojing Rong; Charles Chapman; Alex R. Broadhead; Dan Lorrain; Lucia Correa; John H. Hutchinson; Jilly F. Evans; Peppi Prasit

The potent 5-lipoxygenase-activating protein (FLAP) inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid 11cc is described (AM803, now GSK2190915). Building upon AM103 (1) (Hutchinson et al. J. Med Chem.2009, 52, 5803-5815; Stock et al. Bioorg. Med. Chem. Lett. 2010, 20, 213-217; Stock et al. Bioorg. Med. Chem. Lett.2010, 20, 4598-4601), SAR studies centering around the pyridine moiety led to the discovery of compounds that exhibit significantly increased potency in a human whole blood assay measuring LTB(4) inhibition with longer drug preincubation times (15 min vs 5 h). Further studies identified 11cc with a potency of 2.9 nM in FLAP binding, an IC(50) of 76 nM for inhibition of LTB(4) in human blood (5 h incubation) and excellent preclinical toxicology and pharmacokinetics in rat and dog. 11cc also demonstrated an extended pharmacodynamic effect in a rodent bronchoalveolar lavage (BAL) model. This compound has successfully completed phase 1 clinical studies in healthy volunteers and is currently undergoing phase 2 trials in asthmatic patients.


Nature Chemical Biology | 2010

Seeing the future of bioactive lipid drug targets.

Jilly F. Evans; John H. Hutchinson

Bioactive lipid signaling allows individual cells within the body to see the surrounding environment and to respond in ways that will benefit the whole organism. Successful drug development for bioactive lipid targets requires a deep knowledge of the biology and pathobiology of each specific lipid signaling pathway.


Journal of Pharmacology and Experimental Therapeutics | 2011

Pharmacology of AM211, a Potent and Selective Prostaglandin D2 Receptor Type 2 Antagonist That Is Active in Animal Models of Allergic Inflammation

Gretchen Bain; Daniel S. Lorrain; Karin J. Stebbins; Alex R. Broadhead; Angelina M. Santini; Pat Prodanovich; Janice Darlington; Christopher King; Catherine Lee; Christopher Baccei; Brian Andrew Stearns; Yen Troung; John H. Hutchinson; Peppi Prasit; Jilly F. Evans

The prostaglandin D2 (PGD2) receptor type 2 (DP2) is a G protein-coupled receptor that has been shown to be involved in a variety of allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis. In this study, we describe the preclinical pharmacological and pharmacokinetic properties of the small-molecule DP2 antagonist [2′-(3-benzyl-1-ethyl-ureidomethyl)-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid (AM211). We determine that AM211 has high affinity for human, mouse, rat, and guinea pig DP2 and it shows selectivity over other prostanoid receptors and enzymes. Antagonist activity of AM211 at the DP2 receptor was confirmed by inhibition of PGD2-stimulated guanosine 5′-O-[γ-thio]triphosphate binding to membranes expressing human DP2. A basophil activation assay and a whole-blood assay of eosinophil shape change were used to demonstrate the ability of AM211 to potently antagonize PGD2-stimulated functional responses in relevant human cells and in the context of a physiologically relevant environment. AM211 exhibits good oral bioavailability in rats and dogs and dose-dependently inhibits 13,14-dihydro-15-keto-PGD2-induced leukocytosis in a guinea pig pharmacodynamic assay. AM211 demonstrates efficacy in two animal models of allergic inflammation, including an ovalbumin-induced lung inflammation model in guinea pigs and an ovalbumin-induced mouse model of allergic rhinitis. AM211 represents a potent and selective antagonist of DP2 that may be used clinically to evaluate the role of DP2 in T helper 2-driven allergic inflammatory diseases.


European Journal of Pharmacology | 2010

Pharmacology of AM803, a novel selective five-lipoxygenase-activating protein (FLAP) inhibitor in rodent models of acute inflammation

Daniel S. Lorrain; Gretchen Bain; Lucia Correa; Charles Chapman; Alex R. Broadhead; Angelina M. Santini; Patricia Prodanovich; Janice Darlington; Nicholas Simon Stock; Jasmine Zunic; Christopher King; Catherine Lee; Christopher Baccei; Brian Andrew Stearns; Jeffrey Roger Roppe; John H. Hutchinson; Peppi Prasit; Jilly F. Evans

We evaluated the in vivo pharmacological properties of AM803 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxy-pyridin-3-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, a selective five-lipoxygenase-activating protein (FLAP) inhibitor, using rat and mouse models of acute inflammation. Oral administration of AM803 (1 mg/kg) resulted in sustained inhibition of ex vivo ionophore-challenged whole blood LTB4 biosynthesis with >90% inhibition for up to 12 h and an EC50 of approximately 7 nM. When rat lungs were challenged in vivo with calcium-ionophore, AM803 inhibited LTB4 and cysteinyl leukotriene (CysLT) production with ED50s of 0.12 mg/kg and 0.37 mg/kg, respectively. The inhibition measured 16 h following a single oral dose of 3 mg/kg was 86% and 41% for LTB4 and CysLTs, respectively. In an acute inflammation setting, AM803 dose-dependently reduced LTB4, CysLTs, plasma protein extravasation and neutrophil influx induced by peritoneal zymosan injection. Finally, AM803 increased survival time in mice exposed to a lethal intravenous injection of platelet activating factor (PAF). The magnitude of effect was similar to that of an inhibitor of five-lipoxygenase (5-LO) and LTA4 hydrolase but superior to a leukotriene CysLT1 receptor antagonist. In summary, AM803 is a novel, potent and selective FLAP inhibitor that has excellent pharmacodynamic properties in vivo and is effective in animal models of acute inflammation and in a model of lethal shock.


Bioorganic & Medicinal Chemistry Letters | 2010

5-Lipoxygenase-activating protein inhibitors. Part 2: 3-{5-((S)-1-Acetyl-2,3-dihydro-1H-indol-2-ylmethoxy)-3-tert-butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-1H-indol-2-yl}-2,2-dimethyl-propionic acid (AM679)--a potent FLAP inhibitor.

Nicholas Simon Stock; Christopher Baccei; Gretchen Bain; Alex R. Broadhead; Charles Chapman; Janice Darlington; Christopher King; Catherine Lee; Yiwei Li; Daniel S. Lorrain; Pat Prodanovich; Haojing Rong; Angelina M. Santini; Jasmine Zunic; Jilly F. Evans; John H. Hutchinson; Peppi Prasit

A series of potent 5-lipoxygenase-activating protein (FLAP) inhibitors are herein described. SAR studies focused on the discovery of novel alicyclic moieties appended to an indole core to optimize potency, physical properties and off-target activities. Subsequent SAR on the N-benzyl substituent of the indole led to the discovery of compound 39 (AM679) which showed potent inhibition of leukotrienes in human blood and in a rodent bronchoalvelolar lavage (BAL) challenge model.

Collaboration


Dive into the John H. Hutchinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Lee

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge