Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. McDonough is active.

Publication


Featured researches published by John H. McDonough.


Epilepsy Research | 1999

Anticonvulsant treatment of nerve agent seizures: anticholinergics versus diazepam in soman-intoxicated guinea pigs ☆

John H. McDonough; L.Dean Zoeffel; Joseph D. McMonagle; Tracy L. Copeland; C.Dahlem Smith; Tsung-Ming Shih

A total of eight anticholinergic drugs (aprophen, atropine, azaprophen, benactyzine, biperiden, procyclidine, scopolamine, trihexyphenidyl) were tested in parallel with diazepam for the ability to terminate seizure activity induced by the nerve agent soman. Guinea pigs, implanted with electrodes to record cortical electroencephalographic (EEG) activity, were pretreated with pyridostigmine Br (0.026 mg/kg, i.m.) and 30 min later challenged with 2 x LD50 soman (56 microg/kg, s.c.) followed 1 min later by treatment with atropine SO4 (2 mg/kg, i.m.) and pralidoxime chloride (2-PAM Cl; 25 mg/kg, i.m.). All guinea pigs developed sustained seizure activity following this treatment. Dose-effect curves were determined for the ability of each drug to terminate seizure activity when anticonvulsant treatment was given either 5 or 40 min after seizure onset. Body weight gain and recovery of behavioral performance of a previously trained one-way avoidance task were measured after exposure. With the exception of atropine, all anticholinergic drugs were effective at lower doses than diazepam in terminating seizures when given 5 min after seizure onset; benactyzine, procyclidine and aprophen terminated seizures most rapidly while scopolamine, trihexyphenidyl, biperiden, and diazepam were significantly slower. When given 40 min after seizure onset, diazepam was the most potent compound tested, followed by scopolamine, benactyzine and biperiden; atropine was not effective when tested 40 min after seizure onset. For diazepam, the time to terminate the seizure was the same whether it was given at the 5- or 40-min delay. In contrast, most anticholinergics were significantly slower in terminating seizure activity when


Archives of Toxicology | 1999

Comparative evaluation of benzodiazepines for control of soman-induced seizures

John H. McDonough; Joseph D. McMonagle; Tracy L. Copeland; Dean Zoeffel; Tsung-Ming Shih

Abstract This study evaluated the ability of six benzodiazepines to stop seizures produced by exposure to the nerve agent soman. Guinea pigs, previously prepared with electrodes to record electroencephalographic (EEG) activity, were pretreated with pyridostigmine (0.026 mg/kg, i.m.) 30 min before challenge with soman (56 μg/kg, s.c.) and then treated 1 min after soman exposure with atropine (2.0 mg/kg, i.m.) and pralidoxime chloride (2-PAM Cl; 25 mg/kg, i.m.). All animals developed seizures following this treatment. Benzodiazepines (avizafone, clonazepam, diazepam, loprazolam, lorazepam, and midazolam) were given i.m. 5 or 40 min after seizure onset. All benzodiazepines were effective in stopping soman-induced seizures, but there were marked differences between drugs in the rapidity of seizure control. The 50% effective dose (ED50) values and latencies for anticonvulsant effect for a given benzodiazepine were the same at the two times of treatment delay. Midazolam was the most potent and rapidly acting compound at both treatment times. Since rapid seizure control minimizes the chance of brain damage, use of midazolam as an anticonvulsant may lead to improved clinical outcome in the treatment of nerve agent seizures.


Journal of Pharmacology and Experimental Therapeutics | 2006

Anticonvulsants for Nerve Agent-Induced Seizures: The Influence of the Therapeutic Dose of Atropine

Tsung-Ming Shih; Tami Rowland; John H. McDonough

Two guinea pig models were used to study the anticonvulsant potency of diazepam, midazolam, and scopolamine against seizures induced by the nerve agents tabun, sarin, soman, cyclosarin, O-ethyl S-(2-(diisopropylamino)ethyl)methylphosphonothioate (VX), and O-isobutyl S-(2-diethylamino)ethyl)-methyl phosphonothioate (VR). Animals instrumented for electroencephalogram recording were pretreated with pyridostigmine bromide (0.026 mg/kg i.m.) 30 min before challenge with 2 × LD50 (s.c.) of a nerve agent. In model A, atropine sulfate (2.0 mg/kg i.m.) and pyridine-2-aldoxime methylchloride (2-PAM; 25.0 mg/kg i.m.) were given 1 min after nerve agent challenge, and the tested anticonvulsant was given (i.m.) 5 min after seizure onset. In model B, a lower dose of atropine sulfate (0.1 mg/kg i.m.) was given along with 2-PAM 1 min after nerve agent challenge, and the anticonvulsant was given at seizure onset. With the lower dose of atropine, seizure occurrence increased to virtually 100% for all agents; the time to seizure onset decreased for sarin, cyclosarin, and VX; the signs of nerve agent intoxication were more severe; and coma resulted frequently with cyclosarin. The anticonvulsant ED50 doses for scopolamine or diazepam were, in general, not different between the two models, whereas the anticonvulsant ED50 values of midazolam increased 3- to 17-fold with the lower atropine dose. Seizure termination times were not systematically effected by the different doses of atropine. The order of anticonvulsant effectiveness within each model was scopolamine ≥ midazolam > diazepam. The findings indicate that the dose of atropine given as antidotal therapy can significantly influence measures of nerve agent toxicity and responsiveness to anticonvulsant therapy.


Chemico-Biological Interactions | 2010

Reactivation of brain acetylcholinesterase by monoisonitrosoacetone increases the therapeutic efficacy against nerve agents in guinea pigs.

Jacob W. Skovira; John C. O'Donnell; Irwin Koplovitz; Robert K. Kan; John H. McDonough; Tsung-Ming Shih

Current oxime therapies do not readily cross the blood-brain barrier to reactivate organophosphorus nerve agent-inhibited cholinesterase (ChE) within the CNS. We investigated the ability of monoisonitrosoacetone (MINA), a tertiary oxime, to reactivate ChE inhibited by the nerve agent sarin (GB), cyclosarin (GF), or VX, in peripheral tissues and brain of guinea pigs and determined whether reactivation in the CNS will enhance protection against the lethal effects of these three agents. In the reactivation experiment, animals were pretreated with atropine methylnitrate (1.0mg/kg, i.m.) 15 min prior to subcutaneous (s.c.) challenge with 1.0 x LD(50) of GB, GF, or VX. Fifteen minutes later animals were treated intramuscularly (i.m.) with MINA (ranging from 22.1 to 139.3mg/kg) or 2-PAM (25.0mg/kg). At 60 min after nerve agent, CNS (brainstem, cerebellum, cortex, hippocampus, midbrain, spinal cord, and striatum) and peripheral (blood, diaphragm, heart, and skeletal muscle) tissues were collected for ChE analysis. MINA reactivated nerve agent-inhibited ChE in the CNS and peripheral tissues in a dose-dependent manner in the following order of potency: GB>GF>VX. In a survival experiment, animals were injected i.m. with atropine sulfate (0.5mg/kg), 2-PAM (25.0mg/kg), or MINA (35.0, 60.0, or 100.0mg/kg) alone or in combination 1 min after challenge with varying s.c. doses of GB, GF, or VX to determine the level of protection. The rank order of MINAs efficacy in guinea pigs against nerve agent lethality was the same as for reactivation of inhibited ChE in the CNS. These data show that MINA is capable of reactivating nerve agent-inhibited ChE and that the extent of ChE reactivation within the CNS strongly relates to its therapeutic efficacy.


Chemico-Biological Interactions | 2010

In Vivo Reactivation by Oximes of Inhibited Blood, Brain and Peripheral Tissue Cholinesterase Activity Following Exposure to Nerve Agents in Guinea Pigs

Tsung-Ming Shih; Jacob W. Skovira; John C. O'Donnell; John H. McDonough

This study compared the ability of nine oximes (HI-6, HLö7, MMB-4, TMB-4, carboxime, ICD585, ICD692, ICD3805, and 2-PAM) to reactivate in vivo cholinesterase (ChE) in blood, brain, and peripheral tissues in guinea pigs intoxicated by one of four organophosphorus nerve agents. Two bis-pyridinium compounds without an oxime group, SAD128 and ICD4157, served as non-oxime controls. Animals were injected subcutaneously with 1.0 x LD(50) of the nerve agents sarin, cyclosarin, VR or VX and treated intramuscularly 5 min later with one of these oximes. Toxic signs and lethality were monitored; tissue ChE activities were determined at 60 min after nerve agent. Some animals exposed to sarin or cyclosarin, with or without non-oxime treatment, died within 60 min; however, no animal treated with an oxime died. For VR or VX, all animals survived the 60 min after exposure, with or without non-oxime or oxime therapy. The four nerve agents caused differential degrees of inhibition in blood, brain regions and peripheral tissues. The tested oximes exhibited differential potency in reactivating nerve agent-inhibited ChE in various peripheral tissues, but did not affect ChE activity in the brain regions. There was no direct relation between blood and peripheral tissues in the reactivating efficacy of oxime treatments. ChE inhibited by sarin was the most susceptible to oxime reactivation while cyclosarin the least susceptible. There was no difference in the ChE reactivating potency between the dimethanesulfonate and dichloride salts of HI-6. MMB-4 significantly reactivated the ChE inhibited by these four nerve agents in blood and all three peripheral tissues of the guinea pig, and among all the oximes tested it was the most effective in vivo ChE reactivator against all four nerve agents.


Toxicology Mechanisms and Methods | 2009

Evaluation of nine oximes on in vivo reactivation of blood, brain, and tissue cholinesterase activity inhibited by organophosphorus nerve agents at lethal dose

Tsung-Ming Shih; Jacob W. Skovira; John C. O'Donnell; John H. McDonough

The capability of several oximes (HI-6, HLö7, MMB-4, TMB-4, carboxime, ICD 585, ICD 692, ICD 3805, and 2-PAM) to reactivate in vivo AChE inhibited by the nerve agents sarin, cyclosarin, VX, or VR in blood, brain regions, and peripheral tissues in guinea pigs was examined and compared. Animals were injected subcutaneously with 1.0 LD50 of sarin, cyclosarin, VR, or VX, and treated intramuscularly 5 min later with one of these compounds. Toxic signs and lethality were monitored, and tissue AChE activities were determined at 60 min after nerve agent. The animals exposed to sarin or cyclosarin, alone or with non-oxime treatment, some died within 60 min; however, when treated with an oxime, no animal died. For VR or VX, all animals survived for 60 min after exposure, with or without non-oxime or oxime therapy. These nerve agents caused differential degrees of inhibition: in whole blood sarin = cyclosarin > VR = VX; in brain regions sarin > cyclosarin > VX > VR; and in peripheral tissues sarin > VX > cyclosarin > VR. These oximes exhibited differential potency in reactivating nerve agent-inhibited AChE in various peripheral tissues, but not AChE activity in the brain regions. There was no difference in the AChE reactivating potency between the dichloride and dimethanesulfonate salts of HI-6. AChE inhibited by sarin was the most and cyclosarin the least susceptible to oxime reactivation. Overall, MMB-4 appeared to be, among all oximes tested, the most effective in vivo AChE reactivator against the broadest spectrum of nerve agents.


Drug and Chemical Toxicology | 2010

Time-Dependent Reduction in the Anticonvulsant Effectiveness of Diazepam Against Soman-Induced Seizures in Guinea Pigs

John H. McDonough; Joseph D. McMonagle; Tsung-Ming Shih

Near-lethal exposure to nerve agents produces prolonged epileptiform seizures requiring the administration of benzodiazepine anticonvulsant drugs, such as diazepam. Clinically, benzodiazepines are reported to lose anticonvulsant effectiveness the greater the delay between seizure onset and benzodiazepine treatment. This time-dependent diminished effectiveness of diazepam was tested in the present study. Seizures elicited by the nerve agent, soman, were produced in guinea pigs instrumented to record brain electrocorticographic (ECoG) activity. Different groups of animals were administered 10 mg/kg, intramuscularly, of diazepam at 5, 40, 60, 80, or 160 minutes after the onset of seizure activity. There was a progressive loss in the anticonvulsant efficacy of diazepam as the treatment was delayed after seizure onset, but no differences in the time for diazepam to stop seizures. The results show a diminished ability of diazepam to stop nerve-agent–induced seizures the longer treatment is delayed.


Basic & Clinical Pharmacology & Toxicology | 2009

Comparison of the Intramuscular, Intranasal or Sublingual Routes of Midazolam Administration for the Control of Soman‐Induced Seizures*

John H. McDonough; Kerry Van Shura; John C. LaMont; Joseph D. McMonagle; Tsung-Ming Shih

This study evaluated the anticonvulsant effectiveness of midazolam to stop seizures elicited by the nerve agent soman when midazolam was administered by different routes (intramuscular, intranasal or sublingual) at one of two different times after the onset of seizure activity. Guinea pigs previously prepared with cortical electrodes to record brain electroencephalographic activity were pre-treated with pyridostigmine (0.026 mg/kg, intramuscularly) 30 min. before challenge with a seizure-inducing dose of the nerve agent soman (56 microg/kg, subcutaneously), and 1 min. later, they were administered 2.0 mg/kg atropine sulfate admixed with 25.0 mg/kg 2-PAM Cl (intramuscularly). Groups of animals were administered differing doses of midazolam by the intramuscular, intranasal or sublingual route at either the onset of seizure activity or 40 min. after the onset of seizure activity that was detected in the electroencephalographic record. When given immediately after seizure onset, the anticonvulsant ED50 of intramuscular midazolam was significantly lower than that of intranasal midazolam, which in turn was significantly lower than sublingual midazolam at that time. At the 40-min. treatment delay, the anticonvulsant ED50s of intramuscular or intranasal midazolam did not differ and both were significantly lower than the sublingual route. Higher doses of midazolam were required to stop seizures at the 40-min. treatment delay time compared to immediate treatment. The speed of seizure control for intramuscular or intranasal midazolam was the same while sublingual midazolam acted significantly slower. Midazolam was effective in treating soman-induced seizures when given by all three routes, but with differences in potency and speed of action.


Toxicology Mechanisms and Methods | 2011

The oxime pro-2-PAM provides minimal protection against the CNS effects of the nerve agents sarin, cyclosarin, and VX in guinea pigs

Tsung-Ming Shih; John A. Guarisco; Todd M. Myers; Robert K. Kan; John H. McDonough

This study examined whether pro-2-PAM, a pro-drug dihydropyridine derivative of the oxime 2-pralidoxime (2-PAM) that can penetrate the brain, could prevent or reverse the central toxic effects of three nerve agents; sarin, cyclosarin, and VX. The first experiment tested whether pro-2-PAM could reactivate guinea pig cholinesterase (ChE) in vivo in central and peripheral tissues inhibited by these nerve agents. Pro-2-PAM produced a dose-dependent reactivation of sarin- or VX-inhibited ChE in both peripheral and brain tissues, but with substantially greater reactivation in peripheral tissues compared to brain. Pro-2-PAM produced 9–25% reactivation of cyclosarin-inhibited ChE in blood, heart, and spinal cord, but no reactivation in brain or muscle tissues. In a second experiment, the ability of pro-2-PAM to block or terminate nerve agent-induced electroencephalographic seizure activity was evaluated. Pro-2-PAM was able to block sarin- or VX-induced seizures (16–33%) over a dose range of 24–32 mg/kg, but was ineffective against cyclosarin-induced seizures. Animals that were protected from seizures showed significantly less weight loss and greater behavioral function 24 h after exposure than those animals that were not protected. Additionally, brains were free from neuropathology when pro-2-PAM prevented seizures. In summary, pro-2-PAM provided modest reactivation of sarin- and VX-inhibited ChE in the brain and periphery, which was reflected by a limited ability to block or terminate seizures elicited by these agents. Pro-2-PAM was able to reactivate blood, heart, and spinal cord ChE inhibited by cyclosarin, but was not effective against cyclosarin-induced seizures.


Neurotoxicology | 2012

Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology

Hongna Pan; Xian-zhang Hu; David M. Jacobowitz; Cynthia Chen; John H. McDonough; Kerry Van Shura; Megan Lyman; Ann M. Marini

Nerve agents are deadly threats to military and civilian populations around the world. Nerve agents cause toxicity to peripheral and central sites through the irreversible inhibition of acetylcholinesterase, the enzyme that metabolizes acetylcholine. Excessive acetylcholine accumulation in synapses results in status epilepticus in the central nervous system. Prolonged status epilepticus leads to brain damage, neurological dysfunction and poor outcome. Anticonvulsants are effective but must be given rapidly following exposure. Because these agents cause mass casualties, effective neuroprotective agents are needed to reduce brain damage and improve cognitive outcome. α-Linolenic acid is an omega-3 fatty acid that is found in vegetable products and has no known side effects. α-Linolenic acid is neuroprotective against kainic acid-induced brain damage in vivo, but its neuroprotective efficacy against nerve agents is unknown. α-Linolenic acid also exerts anti-depressant and anti-inflammatory activities and enhances synaptic plasticity in vivo. These properties make this polyunsaturated fatty acid (PUFA) a potential candidate against nerve agent-induced neuropathology. Here we show that α-linolenic acid is neuroprotective against soman-induced neuropathology in either a pretreatment or post-treatment paradigm. We also show that subcutaneous injection of α-linolenic acid shows greater neuroprotective efficacy compared with intravenous injection in a brain region-specific manner.

Collaboration


Dive into the John H. McDonough's collaboration.

Top Co-Authors

Avatar

Tsung-Ming Shih

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Joseph D. McMonagle

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Hilary S. McCarren

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Irwin Koplovitz

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Koenig

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Kerry Van Shura

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Todd M. Myers

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

C. Linn Cadieux

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Douglas Cerasoli

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Ann M. Marini

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge