Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. Priester is active.

Publication


Featured researches published by John H. Priester.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption

John H. Priester; Yuan Ge; Randall E. Mielke; Allison M. Horst; Shelly Cole Moritz; Katherine Espinosa; Jeff Gelb; Sharon L. Walker; Roger M. Nisbet; Youn Joo An; Joshua P. Schimel; Reid G. Palmer; Jose A. Hernandez-Viezcas; Lijuan Zhao; Jorge L. Gardea-Torresdey; Patricia A. Holden

Based on previously published hydroponic plant, planktonic bacterial, and soil microbial community research, manufactured nanomaterial (MNM) environmental buildup could profoundly alter soil-based food crop quality and yield. However, thus far, no single study has at once examined the full implications, as no studies have involved growing plants to full maturity in MNM-contaminated field soil. We have done so for soybean, a major global commodity crop, using farm soil amended with two high-production metal oxide MNMs (nano-CeO2 and -ZnO). The results provide a clear, but unfortunate, view of what could arise over the long term: (i) for nano-ZnO, component metal was taken up and distributed throughout edible plant tissues; (ii) for nano-CeO2, plant growth and yield diminished, but also (iii) nitrogen fixation—a major ecosystem service of leguminous crops—was shut down at high nano-CeO2 concentration. Juxtaposed against widespread land application of wastewater treatment biosolids to food crops, these findings forewarn of agriculturally associated human and environmental risks from the accelerating use of MNMs.


ACS Nano | 2013

In Situ Synchrotron X-ray Fluorescence Mapping and Speciation of CeO2 and ZnO Nanoparticles in Soil Cultivated Soybean (Glycine max)

Jose A. Hernandez-Viezcas; Hiram Castillo-Michel; Joy C. Andrews; Marine Cotte; Cyren M. Rico; Jose R. Peralta-Videa; Yuan Ge; John H. Priester; Patricia A. Holden; Jorge L. Gardea-Torresdey

With the increased use of engineered nanomaterials such as ZnO and CeO₂ nanoparticles (NPs), these materials will inevitably be released into the environment, with unknown consequences. In addition, the potential storage of these NPs or their biotransformed products in edible/reproductive organs of crop plants can cause them to enter into the food chain and the next plant generation. Few reports thus far have addressed the entire life cycle of plants grown in NP-contaminated soil. Soybean ( Glycine max ) seeds were germinated and grown to full maturity in organic farm soil amended with either ZnO NPs at 500 mg/kg or CeO₂ NPs at 1000 mg/kg. At harvest, synchrotron μ-XRF and μ-XANES analyses were performed on soybean tissues, including pods, to determine the forms of Ce and Zn in NP-treated plants. The X-ray absorption spectroscopy studies showed no presence of ZnO NPs within tissues. However, μ-XANES data showed O-bound Zn, in a form resembling Zn-citrate, which could be an important Zn complex in the soybean grains. On the other hand, the synchrotron μ-XANES results showed that Ce remained mostly as CeO₂ NPs within the plant. The data also showed that a small percentage of Ce(IV), the oxidation state of Ce in CeO₂ NPs, was biotransformed to Ce(III). To our knowledge, this is the first report on the presence of CeO₂ and Zn compounds in the reproductive/edible portion of the soybean plant grown in farm soil with CeO₂ and ZnO NPs.


Nature Nanotechnology | 2011

Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain

R. Werlin; John H. Priester; R. E. Mielke; S. Krämer; S. Jackson; P. K. Stoimenov; Galen D. Stucky; Gary N. Cherr; Eduardo Orias; Patricia A. Holden

Previous studies have shown that engineered nanomaterials can be transferred from prey to predator, but the ecological impacts of this are mostly unknown. In particular, it is not known if these materials can be biomagnified-a process in which higher concentrations of materials accumulate in organisms higher up in the food chain. Here, we show that bare CdSe quantum dots that have accumulated in Pseudomonas aeruginosa bacteria can be transferred to and biomagnified in the Tetrahymena thermophila protozoa that prey on the bacteria. Cadmium concentrations in the protozoa predator were approximately five times higher than their bacterial prey. Quantum-dot-treated bacteria were differentially toxic to the protozoa, in that they inhibited their own digestion in the protozoan food vacuoles. Because the protozoa did not lyse, largely intact quantum dots remain available to higher trophic levels. The observed biomagnification from bacterial prey is significant because bacteria are at the base of environmental food webs. Our findings illustrate the potential for biomagnification as an ecological impact of nanomaterials.


Applied and Environmental Microbiology | 2006

Enhanced Exopolymer Production and Chromium Stabilization in Pseudomonas putida Unsaturated Biofilms

John H. Priester; Scott Olson; Samuel M. Webb; Mary P. Neu; Larry E. Hersman; Patricia A. Holden

ABSTRACT Chromium-contaminated soils threaten surface and groundwater quality at many industrial sites. In vadose zones, indigenous bacteria can reduce Cr(VI) to Cr(III), but the subsequent fate of Cr(III) and the roles of bacterial biofilms are relatively unknown. To investigate, we cultured Pseudomonas putida, a model organism for vadose zone bioremediation, as unsaturated biofilms on membranes overlaying iron-deficient solid media either containing molecular dichromate from potassium dichromate (Cr-only treatment) or with deposits of solid, dichromate-coated hematite (Fe+Cr treatment) to simulate vadose zone conditions. Controls included iron-deficient solid medium and an Fe-only treatment using solid hematite deposits. Under iron-deficient conditions, chromium exposure resulted in lower cell yield and lower amounts of cellular protein and carbohydrate, but providing iron in the form of hematite overcame these toxic effects of Cr. For the Cr and Fe+Cr treatments, Cr(VI) was completely reduced to Cr(III) that accumulated on biofilm cells and extracellular polymeric substances (EPSs). Chromium exposure resulted in elevated extracellular carbohydrates, protein, DNA, and EPS sugars that were relatively enriched in N-acetyl-glucosamine, rhamnose, glucose, and mannose. The proportions of EPS protein and carbohydrate relative to intracellular pools suggested Cr toxicity-mediated cell lysis as the origin. However, DNA accumulated extracellularly in amounts far greater than expected from cell lysis, and Cr was liberated when extracted EPS was treated with DNase. These results demonstrate that Cr accumulation in unsaturated biofilms occurs with enzymatic reduction of Cr(VI), cellular lysis, cellular association, and extracellular DNA binding of Cr(III), which altogether can facilitate localized biotic stabilization of Cr in contaminated vadose zones.


Plant Physiology and Biochemistry | 2014

Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants

Jose R. Peralta-Videa; Jose A. Hernandez-Viezcas; Lijuan Zhao; Baltazar Corral Diaz; Yuan Ge; John H. Priester; Patricia A. Holden; Jorge L. Gardea-Torresdey

The aim of this study was to determine nutrient elements in soybean (Glycine max) plants cultivated in farm soil amended with nCeO2 at 0-1000 mg kg(-1) and nZnO at 0-500 mg kg(-1). Digested samples were analyzed by ICP-OES/MS. Compared to control, pods from nCeO2 at 1000 mg kg(-1) had significantly less Ca but more P and Cu, while pods from 100 mg kg(-1)nZnO had more Zn, Mn, and Cu. Plants treated with nZnO showed significant correlations among Zn, P, and S in pods with Zn in roots. Correlations among pod Zn/root Zn was r = 0.808 (p ≤ 0.01) and pod P/root P was r = 0.541 (p ≤ 0.05). The correlation among pod S/root S was r = -0.65 (p ≤ 0.01). While nCeO2 treatments exhibited significant correlations between pod Ca/root Ca (r = 0.645, p ≤ 0.05). The data suggest that nCeO2 and nZnO alter the nutritional value of soybean, which could affect the health of plants, humans, and animals.


Environmental Science & Technology | 2013

Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities.

Yuan Ge; John H. Priester; Laurie C. Van De Werfhorst; Joshua P. Schimel; Patricia A. Holden

It has been reported that engineered nanoparticles (ENPs) alter soil bacterial communities, but the underlying mechanisms and environmental controls of such effects remain unknown. Besides direct toxicity, ENPs may indirectly affect soil bacteria by changing soil water availability or other properties. Alternatively, soil water or other environmental factors may mediate ENP effects on soil bacterial communities. To test, we incubated nano-TiO2-amended soils across a range of water potentials for 288 days. Following incubation, the soil water characteristics, organic matter, total carbon, total nitrogen, and respiration upon rewetting (an indicator of bioavailable organic carbon) were measured. Bacterial community shifts were characterized by terminal restriction fragment length polymorphism (T-RFLP). The endpoint soil water holding had been reported previously as not changing with this nano-TiO2 amendment; herein, we also found that some selected soil properties were unaffected by the treatments. However, we found that nano-TiO2 altered the bacterial community composition and reduced diversity. Nano-TiO2-induced community dissimilarities increased but tended to approach a plateau when soils became drier. Taken together, nano-TiO2 effects on soil bacteria appear to be a result of direct toxicity rather than indirectly through nano-TiO2 affecting soil water and organic matter pools. However, such directs effects of nano-TiO2 on soil bacterial communities are mediated by soil water.


Environmental Science & Technology | 2014

Soybean Plants Modify Metal Oxide Nanoparticle Effects on Soil Bacterial Communities

Yuan Ge; John H. Priester; Laurie C. Van De Werfhorst; Sharon L. Walker; Roger M. Nisbet; Youn Joo An; Joshua P. Schimel; Jorge L. Gardea-Torresdey; Patricia A. Holden

Engineered nanoparticles (ENPs) are entering agricultural soils through land application of nanocontaining biosolids and agrochemicals. The potential adverse effects of ENPs have been studied on food crops and soil bacterial communities separately; however, how ENPs will affect the interacting plant-soil system remains unknown. To address this, we assessed ENP effects on soil microbial communities in soybean-planted, versus unplanted, mesocosms exposed to different doses of nano-CeO2 (0-1.0 g kg(-1)) or nano-ZnO (0-0.5 g kg(-1)). Nano-CeO2 did not affect soil bacterial communities in unplanted soils, but 0.1 g kg(-1) nano-CeO2 altered soil bacterial communities in planted soils, indicating that plants interactively promote nano-CeO2 effects in soil, possibly due to belowground C shifts since plant growth was impacted. Nano-ZnO at 0.5 g kg(-1) significantly altered soil bacterial communities, increasing some (e.g., Rhizobium and Sphingomonas) but decreasing other (e.g., Ensifer, Rhodospirillaceae, Clostridium, and Azotobacter) operational taxonomic units (OTUs). Fewer OTUs decreased from nano-ZnO exposure in planted (41) versus unplanted (85) soils, suggesting that plants ameliorate nano-ZnO effects. Taken together, plants--potentially through their effects on belowground biogeochemistry--could either promote (i.e., for the 0.1 g kg(-1) nano-CeO2 treatment) or limit (i.e., for the 0.5 g kg(-1) nano-ZnO treatment) ENP effects on soil bacterial communities.


Small | 2013

An Assessment of Fluorescence‐ and Absorbance‐Based Assays to Study Metal‐Oxide Nanoparticle ROS Production and Effects on Bacterial Membranes

Allison M. Horst; Raja Vukanti; John H. Priester; Patricia A. Holden

The production and inevitable release of engineered nanoparticles requires rapid approaches to screen for their potential effects in environmental organisms, including bacteria. In bacteria, engineered nanoparticle effects can initiate at the cell membrane, for example by structurally damaging membranes or inhibiting energy transduction. Commercially available fluorescence- and absorbance-based assays could allow for rapidly assaying engineered nanoparticle effects on bacterial membranes, but there are limitations, including that: 1) assays are not currently configured to operate as part of a comprehensive high-throughput screening system, since assay conditions vary widely and formats are mostly high-volume and thus low-throughput, and; 2) engineered nanoparticles can interfere with assay reagents or function, yielding false-negative or -positive outcomes. Here, key assays to study reactive oxygen species (total ROS, and superoxide) production, and impacts on bacterial membrane integrity, membrane potential, and electron transport chain activity, are assessed for their potential use as a comprehensive system to test for nanoparticle effects in bacteria. To address (1), assays are adapted for simultaneous use in 96-well microplates under harmonized conditions. To address (2), a general scheme to test for engineered nanoparticle interferences with assay reagents and function is conceived, and used to study assay interferences by three nanoscale metal-oxides: nano-TiO2 , nano-CeO2 , and nano-ZnO. The results show that the selected assays can be used as a suite, and that nanoparticle interferences, when they occur, can be systematically investigated and often accounted for.


Applied and Environmental Microbiology | 2013

Differential Growth of and Nanoscale TiO2 Accumulation in Tetrahymena thermophila by Direct Feeding versus Trophic Transfer from Pseudomonas aeruginosa

Randall E. Mielke; John H. Priester; Rebecca A. Werlin; Jeff Gelb; Allison M. Horst; Eduardo Orias; Patricia A. Holden

ABSTRACT Nanoscale titanium dioxide (TiO2) is increasingly used in consumer goods and is entering waste streams, thereby exposing and potentially affecting environmental microbes. Protozoans could either take up TiO2 directly from water and sediments or acquire TiO2 during bactivory (ingestion of bacteria) of TiO2-encrusted bacteria. Here, the route of exposure of the ciliated protozoan Tetrahymena thermophila to TiO2 was varied and the growth of, and uptake and accumulation of TiO2 by, T. thermophila were measured. While TiO2 did not affect T. thermophila swimming or cellular morphology, direct TiO2 exposure in rich growth medium resulted in a lower population yield. When TiO2 exposure was by bactivory of Pseudomonas aeruginosa, the T. thermophila population yield and growth rate were lower than those that occurred during the bactivory of non-TiO2-encrusted bacteria. Regardless of the feeding mode, T. thermophila cells internalized TiO2 into their food vacuoles. Biomagnification of TiO2 was not observed; this was attributed to the observation that TiO2 appeared to be unable to cross the food vacuole membrane and enter the cytoplasm. Nevertheless, our findings imply that TiO2 could be transferred into higher trophic levels within food webs and that the food web could be affected by the decreased growth rate and yield of organisms near the base of the web.


PLOS ONE | 2012

Modeling Physiological Processes That Relate Toxicant Exposure and Bacterial Population Dynamics

Tin Klanjscek; Roger M. Nisbet; John H. Priester; Patricia A. Holden

Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the “hazard rate” that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv) a new representation of the “lag time” based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory.

Collaboration


Dive into the John H. Priester's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Ge

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall E. Mielke

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge