Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Harlim is active.

Publication


Featured researches published by John Harlim.


Tellus A | 2007

A comparative study of 4D-VAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96

Elana J. Fertig; John Harlim; Brian R. Hunt

ABSTRACT We formulate a four-dimensional Ensemble Kalman Filter (4D-LETKF) that minimizes a cost function similar to that in a 4D-VAR method. Using perfect model experiments with the Lorenz-96 model, we compare assimilation of simulated asynchronous observations with 4D-VAR and 4D-LETKF. We find that both schemes have comparable error when 4D-LETKF is performed sufficiently frequently and when 4D-VAR is performed over a sufficiently long analysis time window.We explore how the error depends on the time between analyses for 4D-LETKF and the analysis time window for 4D-VAR.


Nonlinearity | 2013

Physics constrained nonlinear regression models for time series

Andrew J. Majda; John Harlim

A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data.


Journal of Computational Physics | 2010

Test models for improving filtering with model errors through stochastic parameter estimation

Boris Gershgorin; John Harlim; Andrew J. Majda

The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.


Journal of Computational Physics | 2010

Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation

Boris Gershgorin; John Harlim; Andrew J. Majda

The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates high predictive skill, comparable with the skill of the perfect model for a duration of many eddy turnover times especially in the unstable regime.


Tellus A | 2007

Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global circulation model

John Harlim; Brian R. Hunt

We present a four-dimensional ensemble Kalman filter (4D-LETKF) that approximately and efficiently solves a variational problem similar to that solved by 4D-VAR, and report numerical results with the Simplified-Parametrized primitive Equation Dynamics model, a simplified global atmospheric model. We discuss the relationship of 4D-LETKF to other ensemble Kalman filters and, in our simulations, compare it with two simpler approaches to assimilating asynchronous observations. We find that 4D-LETKF significantly improves on the approach of treating asynchronous observations as if they occur at the analysis time. For a sufficiently short analysis time interval, the approach of computing innovations from the background state at the observation times and treating those innovations as if they occur at the analysis time is comparable to 4D-LETKF, but for longer analysis intervals, we find that 4D-LETKF is superior to this approach.


Journal of Computational Physics | 2008

Mathematical strategies for filtering complex systems: Regularly spaced sparse observations

John Harlim; Andrew J. Majda

Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The standard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, surprisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal. Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Filter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a precise fashion elucidated here.


Journal of Computational Physics | 2014

An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

John Harlim; Adam Mahdi; Andrew J. Majda

A central issue in contemporary science is the development of nonlinear data driven statistical-dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east-west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.


Monthly Weather Review | 2010

Filtering Turbulent Sparsely Observed Geophysical Flows

John Harlim; Andrew J. Majda

Abstract Filtering sparsely turbulent signals from nature is a central problem of contemporary data assimilation. Here, sparsely observed turbulent signals from nature are generated by solutions of two-layer quasigeostrophic models with turbulent cascades from baroclinic instability in two separate regimes with varying Rossby radius mimicking the atmosphere and the ocean. In the “atmospheric” case, large-scale turbulent fluctuations are dominated by barotropic zonal jets with non-Gaussian statistics while the “oceanic” case has large-scale blocking regime transitions with barotropic zonal jets and large-scale Rossby waves. Recently introduced, cheap radical linear stochastic filtering algorithms utilizing mean stochastic models (MSM1, MSM2) that have judicious model errors are developed here as well as a very recent cheap stochastic parameterization extended Kalman filter (SPEKF), which includes stochastic parameterization of additive and multiplicative bias corrections “on the fly.” These cheap stochasti...


Physical Review E | 2015

Nonparametric forecasting of low-dimensional dynamical systems

Tyrus Berry; Dimitrios Giannakis; John Harlim

This paper presents a nonparametric modeling approach for forecasting stochastic dynamical systems on low-dimensional manifolds. The key idea is to represent the discrete shift maps on a smooth basis which can be obtained by the diffusion maps algorithm. In the limit of large data, this approach converges to a Galerkin projection of the semigroup solution to the underlying dynamics on a basis adapted to the invariant measure. This approach allows one to quantify uncertainties (in fact, evolve the probability distribution) for nontrivial dynamical systems with equation-free modeling. We verify our approach on various examples, ranging from an inhomogeneous anisotropic stochastic differential equation on a torus, the chaotic Lorenz three-dimensional model, and the Niño-3.4 data set which is used as a proxy of the El Niño Southern Oscillation.


arXiv: Dynamical Systems | 2014

Linear theory for filtering nonlinear multiscale systems with model error.

Tyrus Berry; John Harlim

In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline.

Collaboration


Dive into the John Harlim's collaboration.

Top Co-Authors

Avatar

Andrew J. Majda

Courant Institute of Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar

Tyrus Berry

George Mason University

View shared research outputs
Top Co-Authors

Avatar

Dimitrios Giannakis

Courant Institute of Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar

Boris Gershgorin

Courant Institute of Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar

Emily L. Kang

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Xiantao Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

He Zhang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kristen A. Brown

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duane E. Waliser

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge