Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Hulme is active.

Publication


Featured researches published by John Hulme.


International Journal of Nanomedicine | 2015

Current applications of graphene oxide in nanomedicine

Si-Ying Wu; Seong Soo A. An; John Hulme

Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties. The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world. This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material.


Sensors and Actuators B-chemical | 2001

Grating coupled leaky waveguide micro channel sensor chips for optical analysis

Chris Maims; John Hulme; Peter R. Fielden; Nicholas J. Goddard

Abstract Injection moulded polymer leaky waveguide devices are described that enable on-chip fluorescence and absorption measurements to be undertaken on-line in micro total analysis systems. Embossed diffractive elements are incorporated such that effective in- and out-coupling of light from flow channels is achieved without the need for prism coupling and index matching solutions. The system is demonstrated using laser and LED sources to obtain fluorescence and absorption spectra in the visible region.


Sensors and Actuators A-physical | 2002

Internally-referenced resonant mirror devices for dispersion compensation in chemical sensing and biosensing applications

Nicholas J. Goddard; Kirat Singh; John Hulme; Christopher Malins; R Holmes

The Resonant Mirror (RM) Sensor is a leaky planar waveguide optical sensor that uses frustrated total internal re ection (FTR) to couple light into and out of a leaky waveguiding layer. RM modes are dispersive as well as leaky, causing the coupling angle for a particular mode to shift as the illumination wavelength changes. This is a particular problem when using coherent illumination from a laser diode, as these are prone to mode hopping as the diode temperature changes. This leads to sudden changes in the wavelength of the laser output, causing a similar abrupt change in the measured resonance angle. Without some form of referencing, it is impossible to determine whether a change in resonance angle is a result of a wavelength change or a change in surface refractive index.To overcome this problem, an additional buried RM waveguide layer was incorporated into the sensor structure. By using a slightly different thickness for the buried waveguide layer, a second resonance could be obtained for one polarisation which was much less sensitive to surface refractive index changes, but had the same dispersion as the conventional surface RM resonance. As a result, the difference in resonance angle between the buried and surface modes was only sensitive to changes in the refractive index of the overlayer above the surface RM layer. The device is slightly sensitive to changes in temperature, although the response is dominated by the temperature coef®cient of refractive index of the aqueous overlayer. Since the RM layers are very thin( ~1.3 mm in total), thermal equilibrium between the surface and buried modes should be established very rapidly.To demonstrate the utility of this approach, modi®ed RM sensors were fabricated using CVD of silica and silicon nitride. The sensors were tested in two ways; ®rstly by changing the wavelength of illumination using a series of interference ®lters, and secondly by placing materials of different refractive index on the surface of the device. In the ®rst case, the two resonance peaks moved by the same angle, while in the second case, the surface mode moved approximately 25 times further than the buried mode.


OncoTargets and Therapy | 2016

Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time

NamHuk Baek; Ok Won Seo; MinSung Kim; John Hulme; Seong Soo A. An

Recently, increasing numbers of cell culture experiments with 3D spheroids presented better correlating results in vivo than traditional 2D cell culture systems. 3D spheroids could offer a simple and highly reproducible model that would exhibit many characteristics of natural tissue, such as the production of extracellular matrix. In this paper numerous cell lines were screened and selected depending on their ability to form and maintain a spherical shape. The effects of increasing concentrations of doxorubicin (DXR) on the integrity and viability of the selected spheroids were then measured at regular intervals and in real-time. In total 12 cell lines, adenocarcinomic alveolar basal epithelial (A549), muscle (C2C12), prostate (DU145), testis (F9), pituitary epithelial-like (GH3), cervical cancer (HeLa), HeLa contaminant (HEp2), embryo (NIH3T3), embryo (PA317), neuroblastoma (SH-SY5Y), osteosarcoma U2OS, and embryonic kidney cells (293T), were screened. Out of the 12, 8 cell lines, NIH3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U2OS formed regular spheroids and the effects of DXR on these structures were measured at regular intervals. Finally, 5 cell lines, A549, HeLa, SH-SY5Y, U2OS, and 293T, were selected for real-time monitoring and the effects of DXR treatment on their behavior were continuously recorded for 5 days. A potential correlation regarding the effects of DXR on spheroid viability and ATP production was measured on days 1, 3, and 5. Cytotoxicity of DXR seemed to occur after endocytosis, since the cellular activities and ATP productions were still viable after 1 day of the treatment in all spheroids, except SH-SY5Y. Both cellular activity and ATP production were halted 3 and 5 days from the start of the treatment in all spheroids. All cell lines maintained their spheroid shape, except SHSY-5, which behaved in an unpredictable manner when exposed to toxic concentrations of DXR. Cytotoxic effects of DXR towards SH-SY5Y seemed to cause degradation of the extracellular matrix, since all cells were dismantled from the spheroid upon cell death. On the other hand, 293T spheroids revealed retarded cellular activity and ATP productions upon DXR treatment throughout the experiment. Since 293T was the embryonic kidney cells, the fast clearance or neutralizations could have made them resistant towards DXR. In conclusion, the same degree of sensitivity from the 2D system did not translate to a 3D culture system, resulting in higher IC50 values than the 2D system. The varying sensitivities and tolerances to drugs could be better understood with a 3D cell culture system.


Drug Design Development and Therapy | 2016

Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

NamHyuk Baek; Ok Won Seo; Jaehwa Lee; John Hulme; Seong Soo A. An

Three-dimensional (3D) cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D) cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II) or CDDP, on adenosine triphosphate (ATP) generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145), testis (F9), embryonic fibroblast (NIH-3T3), muscle (C2C12), embryonic kidney (293T), neuroblastoma (SH-SY5Y), adenocarcinomic alveolar basal epithelial cell (A549), cervical cancer (HeLa), HeLa contaminant (HEp2), pituitary epithelial-like cell (GH3), embryonic cell (PA317), and osteosarcoma (U-2OS) cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 μM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be visualized only 4 days after treatment. In 293T cells, CDDP failed to kill entirely the culture and ATP generation was only partially blocked after 1 day. This suggests potential CDDP resistance of 293T cells or metabolic clearance of the drug. Real-time monitoring and ATP measurements directly confirmed the cytotoxicity of CDDP, indicating that CDDP may interfere with mitochondrial activity.


Journal of the Neurological Sciences | 2018

Mitochondrial therapeutic interventions in Alzheimer’s disease

Vo Van Giau; Seong Soo A. An; John Hulme

Alzheimers Disease (AD) is one of the most common age-related neurodegenerative diseases in the developed world. Treatment of AD is particularly challenging as the drug must overcome the blood brain barrier (BBB) before it can reach its target. Mitochondria are recognized as one of the most important targets for neurological drugs as the organelle is known to play a critical role in diverse cellular processes such as energy production and apoptosis regulation. Mitochondrial targeting was originally developed to study mitochondrial dysfunction and the organelles interaction with other sub-cellular organelles. The purpose of this review is to provide an overview of mitochondrial dysfunction and its role in late onset AD pathology. We then highlight recent antioxidant and enzymatic treatments used to alleviate mitochondrial dysfunction. Finally, we describe current applications of targeted mitochondrial delivery in the treatment of AD.


Drug Design Development and Therapy | 2016

Diminazene aceturate: an antibacterial agent for Shiga-toxin-producing Escherichia coli O157:H7

Si-Ying Wu; Gil Yong Park; So-Hee Kim; John Hulme; Seong Soo A. An

The aim of this study was to investigate the bacteriostatic and bactericidal effects of diminazene aceturate (DA) against five strains of pathogenic bacteria and two strains of nonpathogenic bacteria. The results showed that 5 μg/mL of DA suppressed the growth of pathogenic Escherichia coli by as much as 77% compared with the controls. Enterohemorrhagic E. coli EDL933 (an E. coli O157:H7 strain) was the most sensitive to DA with a minimum inhibitory concentration of 20 μg/mL. Additional investigations showed that DA induced the highest level of intracellular reactive oxygen species in EDL933. A positive correlation between the reactive oxygen species levels and DA concentration was demonstrated. DA (5 μg/mL) was also a potent uncoupler, inducing a stationary phase collapse (70%–75%) in both strains of E. coli O157:H7. Further investigation showed that the collapse was due to the NaCl:DA ratio in the broth and was potassium ion dependent. A protease screening assay was conducted to elucidate the underlying mechanism. It was found that at neutral pH, the hydrolysis of H-Asp-pNA increased by a factor of 2–3 in the presence of DA, implying that DA causes dysregulation of the proton motive force and a decrease in cellular pH. Finally, a commercial verotoxin test showed that DA did not significantly increase toxin production in EDL933 and was a suitable antibacterial agent for Shiga-toxin-producing E. coli.


International Journal of Nanomedicine | 2015

Spotlight on nano-theranostics in South Korea: applications in diagnostics and treatment of diseases.

Sang-Wha Lee; Jongsung Kim; Chung Wung Bark; Bonghee Lee; Heongkyu Ju; Se Chan Kang; Tae Young Kim; Moon Il Kim; Young Tag Ko; Jeong-Seok Nam; Hyon Hee Yoon; Kyusik Yun; Young Soo Yoon; Seong Soo A. An; John Hulme

From the synergistic integration and the multidisciplinary strengths of the BioNano Sensor Research Center, Gachon Bionano Research Institute, and Lee Gil Ya Cancer and Diabetes Institute, researchers, students, and faculties at Gachon University in collaboration with other institutions in Korea, Australia, France, America, and Japan have come together to produce a special issue on the diverse applications of nano-theranostics in nanomedicine. This special issue will showcase new research conducted by various scientific groups in Gyonggi-do and Songdo/Incheon, South Korea. The objectives of this special issue are as follows: 1) to bring together and demonstrate some of the latest research results in the field, 2) to introduce new multifunctional nanomaterials and their applications in imaging and detection methods, and 3) to stimulate collaborative interdisciplinary research at both national and international levels in nanomedicine.


Lab on a Chip | 2002

Rapid prototyping for injection moulded integrated microfluidic devices and diffractive element arrays

John Hulme; Stephan Mohr; Nicholas J. Goddard; Peter R. Fielden


Current Applied Physics | 2011

The effects of gas mixtures on hydrogen permeation through Pd–Ag/V–Ni alloy composite membrane

John Hulme; Masao Komaki; Chikashi Nishimura; Jihye Gwak

Collaboration


Dive into the John Hulme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirat Singh

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Chris Malins

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

R Holmes

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Stephan Mohr

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff E. Prest

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge