Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John I. Githure is active.

Publication


Featured researches published by John I. Githure.


The Journal of Infectious Diseases | 2006

Moderate Effect of Artemisinin-Based Combination Therapy on Transmission of Plasmodium falciparum

J. Teun Bousema; Petra Schneider; Louis C. Gouagna; Chris Drakeley; Alma Tostmann; Rein M.G.J. Houben; John I. Githure; Rosalynn Ord; Colin J. Sutherland; Sabah A. Omar; Robert W. Sauerwein

Background. Artemisinin-based combination therapy (ACT) reduces microscopically confirmed gametocytemia and mosquito infection. However, molecular techniques have recently revealed high prevalences of submicroscopic gametocytemia. Our objective here was to determine the effect of sulfadoxine-pyrimethamine (SP) monotherapy and treatment with SP plus amodiaquine (AQ), SP plus artesunate (AS), and artemether-lumefantrine (AL; Coartem) on submicroscopic gametocytemia and infectiousness.Methods. Kenyan children (n=528) 6 months-10 years of age were randomized to 4 treatment arms. Gametocytemia was determined by both microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays.Results. Gametocyte prevalence, as determined by Pfs25 QT-NASBA, was 89.4% (219/245) at enrollment and decreased after treatment with SP plus AS, SP plus AQ, and AL. Membrane-feeding assays for a group of randomly selected children revealed that the proportion of infectious children was as much as 4-fold higher than expected when based on microscopy. ACT did not significantly reduce the proportion of infectious children but did reduce the proportion of infected mosquitoes.Conclusions. Submicroscopic gametocytemia is common after treatment and contributes considerably to mosquito infection. Our findings should be interpreted in the context of transmission intensity, but the effect of ACT on malaria transmission appears to be moderate and restricted to the duration of gametocyte carriage and the proportion of mosquitoes that are infected by carriers.


Malaria Journal | 2004

Plasmodium falciparum gametocyte carriage in asymptomatic children in western Kenya

J. Teun Bousema; Louis C. Gouagna; Chris Drakeley; Annemiek M. Meutstege; Bernard Okech; Ikupa N J Akim; John C. Beier; John I. Githure; Robert W. Sauerwein

BackgroundStudies on Plasmodium falciparum gametocyte development and dynamics have almost exclusively focused on patients treated with antimalarial drugs, while the majority of parasite carriers in endemic areas are asymptomatic. This study identified factors that influence gametocytaemia in asymptomatic children in the absence and presence of pyrimethamine-sulphadoxine (SP) antimalarial treatment.MethodsA cohort of 526 children (6 months – 16 years) from western Kenya was screened for asexual parasites and gametocytes and followed weekly up to four weeks. Children with an estimated parasitaemia of ≥1,000 parasites/μl were treated with SP according to national guidelines. Factors associated with gametocyte development and persistence were determined in untreated and SP-treated children with P. falciparum mono-infection.ResultsGametocyte prevalence at enrolment was 33.8% in children below five years of age and decreased with age. In the absence of treatment 18.6% of the children developed gametocytaemia during follow-up; in SP-treated children this proportion was 29.8%. Age, high asexual parasite density and gametocyte presence at enrolment were predictive factors for gametocytaemia. The estimated mean duration of gametocytaemia for children below five, children from five to nine and children ten years and above was 9.4, 7.8 and 4.1 days, respectively.ConclusionThis study shows that a large proportion of asymptomatic untreated children develop gametocytaemia. Gametocytaemia was particularly common in children below five years who harbor gametocytes for a longer period of time. The age-dependent duration of gametocytaemia has not been previously shown and could increase the importance of this age group for the infectious reservoir.


Malaria Journal | 2004

A Simulation Model of African Anopheles Ecology and Population Dynamics for the Analysis of Malaria Transmission.

Jean Marc O Depinay; Charles M. Mbogo; Gerry F. Killeen; Bart G. J. Knols; John C. Beier; John C. Carlson; Jonathan Dushoff; Peter F. Billingsley; Henry Mwambi; John I. Githure; Abdoulaye Toure; F. Ellis McKenzie

BackgroundMalaria is one of the oldest and deadliest infectious diseases in humans. Many mathematical models of malaria have been developed during the past century, and applied to potential interventions. However, malaria remains uncontrolled and is increasing in many areas, as are vector and parasite resistance to insecticides and drugs.MethodsThis study presents a simulation model of African malaria vectors. This individual-based model incorporates current knowledge of the mechanisms underlying Anopheles population dynamics and their relations to the environment. One of its main strengths is that it is based on both biological and environmental variables.ResultsThe model made it possible to structure existing knowledge, assembled in a comprehensive review of the literature, and also pointed out important aspects of basic Anopheles biology about which knowledge is lacking. One simulation showed several patterns similar to those seen in the field, and made it possible to examine different analyses and hypotheses for these patterns; sensitivity analyses on temperature, moisture, predation and preliminary investigations of nutrient competition were also conducted.ConclusionsAlthough based on some mathematical formulae and parameters, this new tool has been developed in order to be as explicit as possible, transparent in use, close to reality and amenable to direct use by field workers. It allows a better understanding of the mechanisms underlying Anopheles population dynamics in general and also a better understanding of the dynamics in specific local geographic environments. It points out many important areas for new investigations that will be critical to effective, efficient, sustainable interventions.


Medical and Veterinary Entomology | 1996

The impact of permethrin‐impregnated bednets on malaria vectors of the Kenyan coast

Charles M. Mbogo; N. M. Baya; A. V. O. Ofulla; John I. Githure; Robert W. Snow

Abstract. The effects of introducing permethrin‐impregnated bednets on local populations of the malaria vector mosquitoes Anopheles funestus and the An.gambiae complex was monitored during a randomized controlled trial at Kilifi on the Kenyan coast. Pyrethrum spray collections inside 762 households were conducted between May 1994 and April 1995 after the introduction of bednets in half of the study area. All‐night human bait collections were performed in two zones (one control and one intervention) for two nights each month during the same period. PCR identifications of An.gambiae sensu lato showed that proportions of sibling species were An.gambiae sensu stricto > An.merus > An.arabiensis.


Malaria Journal | 2006

Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control

Andrew K. Githeko; John M. Ayisi; Peter Odada; Francis Atieli; Bryson Ndenga; John I. Githure; Guiyun Yan

BackgroundRecent resurgence of malaria in the highlands of Western Kenya has called for a more comprehensive understanding of the previously neglected complex highland vector ecology. Besides other drivers of malaria epidemiology, topography is likely to have a major effect on spatial vector and parasite distribution. The aim of this study was to determine the effects of topography on malaria spatial vector distribution and parasite prevalence.MethodologyIndoor resting adult malaria vectors and blood parasites were collected in three villages along a 4 km transect originating from the valley bottom and ending at the hilltop for 13 months. Members of the Anopheles gambiae complex were identified by PCR. Blood parasites were collected from children 6–13 years old and densities categorized by site of home location and age of the children.ResultsNinety eight percent (98%) of An. gambiae s.s. and (99%) Anopheles funestus were collected in houses located at the edge of the valley bottom, whereas 1% of An. gambiae s.s. were collected at mid hill and at the hilltop respectively. No An. funestus were collected at the hilltop. Malaria prevalence was 68% at the valley bottom, 40.2% at mid hill and 26.7% at the hilltop. Children aged six years and living at the edge of the valley bottom had an annual geometric mean number of 66.1 trophozoites for every 200 white blood cells, while those living at mid-hill had a mean of 84.8, and those living at hilltop had 199.5 trophozoites.ConclusionMalaria transmission in this area is mainly confined to the valley bottom. Effective vector control could be targeted at the foci. However, the few vectors observed at mid-hill maintained a relatively high prevalence rate. The higher variability in blood parasite densities and their low correlation with age in children living at the hilltop suggests a lower stability of transmission than at the mid-hill and valley bottom.


Nature | 2011

Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes.

Stephanie Lynn Turner; Nan Li; Tom Guda; John I. Githure; Ring T. Cardé; Anandasankar Ray

Carbon dioxide (CO2) present in exhaled air is the most important sensory cue for female blood-feeding mosquitoes, causing activation of long-distance host-seeking flight, navigation towards the vertebrate host and, in the case of Aedes aegypti, increased sensitivity to skin odours. The CO2 detection machinery is therefore an ideal target to disrupt host seeking. Here we use electrophysiological assays to identify a volatile odorant that causes an unusual, ultra-prolonged activation of CO2-detecting neurons in three major disease-transmitting mosquitoes: Anopheles gambiae, Culex quinquefasciatus and A. aegypti. Importantly, ultra-prolonged activation of these neurons severely compromises their ability subsequently to detect CO2 for several minutes. We also identify odours that strongly inhibit CO2-sensitive neurons as candidates for use in disruption of host-seeking behaviour, as well as an odour that evokes CO2-like activity and thus has potential use as a lure in trapping devices. Analysis of responses to panels of structurally related odours across the three mosquitoes and Drosophila, which have related CO2-receptor proteins, reveals a pattern of inhibition that is often conserved. We use video tracking in wind-tunnel experiments to demonstrate that the novel ultra-prolonged activators can completely disrupt CO2-mediated activation as well as source-finding behaviour in Aedes mosquitoes, even after the odour is no longer present. Lastly, semi-field studies demonstrate that use of ultra-prolonged activators disrupts CO2-mediated hut entry behaviour of Culex mosquitoes. The three classes of CO2-response-modifying odours offer powerful instruments for developing new generations of insect repellents and lures, which even in small quantities can interfere with the ability of mosquitoes to seek humans.


Malaria Journal | 2013

Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years

Joseph M. Mwangangi; Charles M. Mbogo; Benedict Orindi; Ephantus J. Muturi; Janet Midega; Joseph G. Nzovu; Hellen Gatakaa; John I. Githure; Christian Borgemeister; Joseph Keating; John C. Beier

BackgroundOver the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya.MethodsUsing data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates.ResultsResults show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90–0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010.ConclusionReductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.


Journal of Medical Entomology | 2001

Anopheline Mosquito Survival Strategies During the Dry Period in Western Kenya

Noboru Minakawa; John I. Githure; John C. Beier; Guiyun Yan

Abstract The dry season survival mechanism of Anopheles gambiae Giles is one of the most vexing deficiencies in our understanding of the biology of the major malaria vectors. In this study, we examined the dynamics of anopheline adult mosquitoes, their larval habitats, and egg survival potential during the dry season in the basin region of Lake Victoria, western Kenya. Through field surveys, we demonstrated two survival strategies of An. gambiae sensu stricto during the dry season: continuous reproduction throughout the year and embryo dormancy in moist soil for at least several days. We further demonstrated that An. gambiae shows a strong preference for moist soil as an oviposition substrate rather than dry soil substrate under the insectary conditions. The observation that anopheline eggs remain a dormant stage to resist desiccation clearly contrasts the conventional wisdom that anopheline eggs hatch shortly after they are laid. Our results from western Kenya are consistent with the suggestion that anopheline mosquitoes do not necessarily suffer a severe population bottleneck during the dry season and thus maintain a large effective population size.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2003

An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya

Weidong Gu; Gerry F. Killeen; Charles M. Mbogo; James L. Regens; John I. Githure; John C. Beier

Individual-based models provide powerful tools to model complex interactions characterized by individual variability. This paper presents an object-oriented design for individual-based modelling of Plasmodium falciparum malaria transmission. Two kinds of objects, human and mosquito, that exhibit variability among individuals for parameters such as recovery and survival rates are defined. The model tracks the dynamics of human hosts and adult female mosquitoes individually. Immunity, modelled as a function of exposure history, is represented by reduced susceptibility and increased recovery rate. The model was calibrated using epidemiological data collected at 30 sites along the coast of Kenya. The sites were grouped into low, intermediate and high transmission based on mean daily human-biting rates. Simulation results show that malaria transmission was stable even in low transmission areas where the human-biting rate is approximately 0.5 bite per day. The model was used to examine the effect of infection control programmes that aim at interrupting transmission by reducing human-vector contact rates and implementing active case detection and drug treatment of infections. With this intervention, local elimination of malaria is likely with a probability of extinction of approximately 0.8 in low transmission areas. However, a small amount of immigration (> 0.3%) by infected people into the community could prevent local extinction of the parasite. In intermediate and high transmission areas, reduction in prevalence is short-lived and the probability of local elimination is low, even at high coverage levels of the intervention.


Journal of Medical Entomology | 2003

Larval Habitat Diversity and Ecology of Anopheline Larvae in Eritrea

Josephat Shililu; Tewolde Ghebremeskel; Fessahaye Seulu; Solomon Mengistu; Helen Fekadu; Mehari Zerom; Asmelash Ghebregziabiher; David Sintasath; Gustavo Bretas; Charles M. Mbogo; John I. Githure; Eugene Brantly; Robert J. Novak; John C. Beier

Abstract Studies on the spatial distribution of anopheline mosquito larvae were conducted in 302 villages over two transmission seasons in Eritrea. Additional longitudinal studies were also conducted at eight villages over a 24-mo period to determine the seasonal variation in anopheline larval densities. Eight anopheline species were identified with Anopheles arabiensis predominating in most of the habitats. Other species collected included: An. cinereus, An. pretoriensis, An. d’thali, An. funestus, An. squamosus, An. adenensis, and An. demeilloni. An. arabiensis was found in five of the six aquatic habitats found positive for anopheline larvae during the survey. Anopheles larvae were sampled predominantly from stream edges and streambed pools, with samples from this habitat type representing 91.2% (n = 9481) of the total anopheline larval collection in the spatial distribution survey. Other important anopheline habitats included rain pools, ponds, dams, swamps, and drainage channels at communal water supply points. Anopheline larvae were abundant in habitats that were shallow, slow flowing and had clear water. The presence of vegetation, intensity of shade, and permanence of aquatic habitats were not significant determinants of larval distribution and abundance. Larval density was positively correlated with water temperature. Larval abundance increased during the wet season and decreased in the dry season but the timing of peak densities was variable among habitat types and zones. Anopheline larvae were collected all year round with the dry season larval production restricted mainly to artificial aquatic habitats such as drainage channels at communal water supply points. This study provides important information on seasonal patterns of anopheline larval production and larval habitat diversity on a countrywide scale that will be useful in guiding larval control operations in Eritrea.

Collaboration


Dive into the John I. Githure's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles M. Mbogo

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Josephat Shililu

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

Robert J. Novak

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Mwangangi

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Guiyun Yan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis C. Gouagna

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge