Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Eppig is active.

Publication


Featured researches published by John J. Eppig.


Biology of Reproduction | 2003

A Revised Protocol for In Vitro Development of Mouse Oocytes from Primordial Follicles Dramatically Improves Their Developmental Competence

Marilyn J. O'Brien; Janice K. Pendola; John J. Eppig

Abstract The objective of this study was to improve the conditions for oocyte development in vitro beginning with the primordial follicles of newborn mice. Previous studies showed that oocytes competent of meiotic maturation, fertilization, and preimplantation could develop in vitro from primordial follicles. However, the success rates were low and only one live offspring was produced (0.5% of embryos transferred). A revised protocol was compared with the original protocol using oocyte maturation and preimplantation development as end points. The percentage of oocytes maturing to metaphase II and developing to the blastocyst stage was significantly improved using the revised protocol. In addition, we compared the production of offspring from two-cell stage embryos derived from in vitro-grown and in vivo-grown oocytes. Of 1160 transferred two-cell stage embryos derived from in vitro-grown oocytes, 66 (5.7%) developed to term and 7 pups (10.6%) died at birth. The remaining 59 pups (27 females, 32 males) survived to adulthood. By comparison, of 437 transferred two-cell stage embryos derived from in vivo-grown oocytes, 76 (17.4%) developed to term and 4 (5.3%) died at birth. The remaining 72 pups (35 females, 37 males) survived to adulthood. These studies provide proof of the principle that fully competent mammalian oocytes can develop in vitro from primordial follicles and present a significant advance in oocyte culture technology.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The mammalian oocyte orchestrates the rate of ovarian follicular development.

John J. Eppig; Karen Wigglesworth; Frank L. Pendola

The development of both the mammalian oocyte and the somatic cell compartments of the ovarian follicle is highly coordinated; this coordination ensures that the ovulated oocyte is ready to undergo fertilization and subsequent embryogenesis. Disruption of this synchrony results in oocyte developmental failure. Communication between the oocyte and companion somatic cells is essential for successful development of both follicular compartments. However, it was not previously known whether one cell type, either the somatic or the germ cell compartment, determines the overall rate of follicular development. To test the hypothesis that the oocyte orchestrates the rate of follicle development, mid-sized oocytes isolated from secondary follicles were transferred back to primordial follicles, the earliest stage of follicular development. This transfer doubled the rate of follicular development and the differentiation of follicular somatic cells. Oocyte development in these accelerated follicles appeared normal; recovered oocytes were competent to undergo fertilization and embryonic development. These results demonstrate that oocytes orchestrate and coordinate the development of mammalian ovarian follicles and that the rate of follicular development is based on a developmental program intrinsic to the oocyte.


Nature Genetics | 2003

Zygote arrest 1 ( Zar1 ) is a novel maternal-effect gene critical for the oocyte-to-embryo transition

Xuemei Wu; Maria M. Viveiros; John J. Eppig; Yuchen Bai; Susan L. Fitzpatrick; Martin M. Matzuk

The female gamete (the oocyte) serves the distinct purpose of transmitting the maternal genome and other maternal factors that are critical for post-ovulation events. Through the identification and characterization of oocyte-specific factors, we are beginning to appreciate the diverse functions of oocytes in ovarian folliculogenesis, fertilization and embryogenesis. To understand these processes further, we identified genes called zygote arrest 1 (Zar1 and ZAR1 in mouse and human, respectively) as novel oocyte-specific genes. These encode proteins of 361 amino acids and 424 amino acids, respectively, which share 59% amino-acid identity and an atypical plant homeo-domain (PHD) motif. Although Zar1-null (Zar1−/−) mice are viable and grossly normal, Zar1−/− females are infertile. Ovarian development and oogenesis through the early stages of fertilization are evidently unimpaired, but most embryos from Zar1−/− females arrest at the one-cell stage. Distinct pronuclei form and DNA replication initiates, but the maternal and paternal genomes remain separate in arrested zygotes. Fewer than 20% of the embryos derived from Zar1−/− females progress to the two-cell stage and show marked reduction in the synthesis of the transcription-requiring complex, and no embryos develop to the four-cell stage. Thus, Zar1 is the first identified oocyte-specific maternal-effect gene that functions at the oocyte-to-embryo transition and, as such, offers new insights into the initiation of embryonic development and fertility control in mammals.


Developmental Biology | 1990

FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte.

Roberto Buccione; Barbara C. Vanderhyden; Philip J. Caron; John J. Eppig

Although it has been shown that granulosa cells regulate the growth and meiotic maturation of mammalian oocytes, there is little evidence of a role for the oocyte in the differentiation or function of granulosa cells. To test the hypothesis that the oocyte participates in the regulation of granulosa cell function, oocytes were removed from isolated oocyte-cumulus cell complexes by a microsurgical procedure and oocytectomized complexes were tested for their ability to undergo expansion in response to follicle-stimulating hormone (FSH). FSH increased the levels of intracellular cAMP, the activity of the hyaluronic acid-synthesizing enzyme system, and induced cumulus expansion in intact complexes. In contrast, FSH did not induce increased hyaluronic acid-synthesizing enzyme activity or cumulus expansion in oocytectomized complexes. Therefore, the participation of the oocyte is necessary for the cumulus cells to synthesize hyaluronic acid and undergo cumulus expansion in vitro in response to stimulation with FSH. FSH induced the elevation of intracellular cAMP to the same extent in both intact and oocytectomized complexes and the cAMP analog 8-bromo cyclic adenosine monophosphate (8Br-cAMP) did not stimulate expansion in oocytectomized complexes. Therefore, the influence of the oocyte on cumulus expansion occurs downstream from the elevation of cAMP levels in the cumulus cells. Epidermal growth factor (EGF), a potent stimulator of cumulus expansion in intact complexes, which probably acts by a mechanism at least initially different from FSH, failed to stimulate cumulus expansion after oocytectomy. Next, oocytectomized complexes were either cocultured with germinal vesicle stage denuded oocytes or cultured in medium conditioned by denuded oocytes. In both cases, FSH or EGF stimulated expansion by oocytectomized complexes. The degree of expansion was directly correlated to the number of oocytes used to condition the medium. Contact between the oocyte and the cumulus cells is not necessary for cumulus expansion. Rather, a factor(s) secreted by the oocyte is necessary for the cumulus cells to undergo expansion in response to either FSH or EGF. FSH did not induce expansion of oocytectomized complexes in media conditioned by various somatic cells such as granulosa cells, fibroblasts, and Sertoli cells; by a mixed population of male germ cells; or by spermatozoa. This suggests that the expansion enabling activity is specific to the oocyte. These results demonstrate that the oocyte participates in the regulation of cumulus cell function.


Science | 2010

Granulosa Cell Ligand NPPC and Its Receptor NPR2 Maintain Meiotic Arrest in Mouse Oocytes

Meijia Zhang; You-Qiang Su; Koji Sugiura; Guoliang Xia; John J. Eppig

Arresting Meiosis In mammals, meiotic maturation of oocytes must be coordinated precisely with ovulation to produce a developmentally competent egg at the right time for fertilization. How is coordination achieved? Follicular granulosa cells prevent precocious resumption of meiosis in oocytes, maintaining meiotic arrest until the pre-ovulatory hormone surge. Granulosa cells produce cyclic guanosine monophosphate, which is delivered to oocytes and arrests meiotic progression by inhibiting oocyte cyclic adenosine monophosphate degradation. How cGMP production is regulated is unclear. Now, Zhang et al. (p. 366) report that NPPC (natriuretic peptide precursor type C), produced by mural granulosa cells, and its receptor NPR2, a guanylyl cyclase expressed by cumulus cells, together promote cGMP production by cumulus cells and are thus essential for maintaining meiotic arrest in mouse oocytes. A peptide from follicle cells contributes to timing of chromosome segregation in meiosis. Granulosa cells of mammalian Graafian follicles maintain oocytes in meiotic arrest, which prevents their precocious maturation. We show that mouse mural granulosa cells, which line the follicle wall, express natriuretic peptide precursor type C (Nppc) messenger RNA (mRNA), whereas cumulus cells surrounding oocytes express mRNA of the NPPC receptor NPR2, a guanylyl cyclase. NPPC increased cGMP levels in cumulus cells and oocytes and inhibited meiotic resumption in vitro. Meiotic arrest was not sustained in most Graafian follicles of Nppc or Npr2 mutant mice, and meiosis resumed precociously. Oocyte-derived paracrine factors promoted cumulus cell expression of Npr2 mRNA. Therefore, the granulosa cell ligand NPPC and its receptor NPR2 in cumulus cells prevent precocious meiotic maturation, which is critical for maturation and ovulation synchrony and for normal female fertility.


Developmental Biology | 1990

Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation

Barbara C. Vanderhyden; Philip J. Caron; Roberto Buccione; John J. Eppig

The expansion, or mucification, of the mouse cumulus oophorus in vitro requires the presence of an enabling factor secreted by the oocyte as well as stimulation with follicle-stimulating hormone (FSH). This study focuses on (1) the ability of mouse oocytes to secrete the enabling factor at various times during oocyte growth and maturation, (2) the temporal relationships between the development of the capacity of the oocyte to undergo germinal vesicle breakdown, the ability of the oocyte to secrete cumulus expansion-enabling factor, and the capacity of the cumulus oophorus to undergo expansion, and (3) the role of the oocyte in the differentiation of granulosa cells as functional cumulus cells. Growing, meiotically incompetent oocytes did not produce detectable amounts of cumulus expansion-enabling factor, but fully grown meiosis-arrested oocytes, maturing oocytes, and metaphase II oocytes did. Detectable quantities of enabling factor were produced by zygotes, but not by two-cell stage to morula embryos. The ability of oocytes to secrete cumulus expansion enabling factor and the capacity of cumulus cells to respond to FSH and the enabling factor are temporally correlated with the acquisition of oocyte competence to undergo germinal vesicle breakdown. Mural granulosa cells of antral follicles do not expand in response to FSH even in the presence of cumulus expansion-enabling factor, showing that mural granulosa cells and cumulus cells are functionally distinct cell types. The perioocytic granulosa cells of preantral follicles isolated from 12-day-old mice differentiate into functional cumulus cells during a 7-day period in culture. Oocytectomized granulosa cell complexes grown in medium conditioned by either growing or fully grown oocytes were comparable in size to intact complexes and maintained their 3-dimensional integrity to a greater degree than oocytectomized complexes grown in unconditioned medium. After 7 days, the oocytectomized complexes were stimulated with FSH in the presence of enabling factor, but no expansion was observed whether or not the oocytectomized complexes grew in the presence of oocyte-conditioned medium. These results suggest that a factor(s) secreted by the oocyte affects granulosa cell proliferation and the structural organization of the follicle, but continual close association with the oocyte appears necessary for the differentiation of granulosa cells into functional cumulus cells, insofar as they are capable of undergoing expansion.


Developmental Biology | 1982

The relationship between cumulus cell-oocyte coupling, oocyte meiotic maturation, and cumulus expansion

John J. Eppig

Abstract The timing of the reduction of cumulus cell-oocyte coupling was correlated with oocyte meiotic maturation and the expansion (mucification) of the cumulus oophorus using immature mice treated with gonadotropins. Three hours after the injection of an ovulatory dose of human chorionic gonadotropin (hCG), more than 90% of the oocytes isolated from large Graafian follicles had undergone germinal vesicle breakdown, indicating that oocyte meiotic maturation had been initiated. However, no cumulus expansion or reduction of intercellular coupling was detected at this time. By 6 hr after hCG injection, the index of oocyte-cumulus cell coupling was still not less than that found in oocyte-cumulus cell complexes isolated from control mice not receiving hCG. Cumulus expansion at 6 hr post-hCG was limited to the outer cumulus cells while those adjacent to the oocyte were still tightly packed. Cumulus expansion appeared complete by 9 hr after hCG injection and the cumulus cell-oocyte coupling index was greatly reduced. These results show that oocyte meiotic maturation in the mouse is not initiated by a reduction in cumulus cell-oocyte coupling or by cumulus expansion. However, the results suggest that the reduction of intercellular coupling in vivo may be a result of cumulus expansion.


Developmental Biology | 1984

The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal

Allen C. Schroeder; John J. Eppig

The aim of this project was to compare the developmental capacities of mouse oocytes matured in vivo and in vitro. The frequencies of fertilization, preimplantation development, and birth of live offspring after transfer of morulae to uteri of pseudopregnant foster mothers were compared after germinal vesicle stage oocytes underwent spontaneous maturation in vitro, and after gonadotropin-induced maturation in vivo and ovulation. Both groups of matured ova were fertilized in vitro, and preimplantation development was carried out in vitro. Equivalent developmental capacities were observed for all comparisons between the two groups of oocytes. The acquisition of normal developmental capacity depended on the presence of serum in the oocyte maturation medium. The expansion (mucification) of the cumulus oophorus was not required for fertilization or normal development. The frequency of fertilization was lower in oocytes that matured while denuded of cumulus cells. However, when fertilization did occur in these oocytes, a normal percentage developed to live offspring. It is concluded that a normal developmental program occurs during spontaneous maturation of mouse oocytes, and that the presence of cumulus cells during spontaneous maturation may affect the oocytes fertilizability rather than its subsequent developmental capacity.


Development | 2007

Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells

You-Qiang Su; Koji Sugiura; Karen Wigglesworth; Marilyn J. O'Brien; Jason P. Affourtit; Stephanie A. Pangas; Martin M. Matzuk; John J. Eppig

Oocyte-derived bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are key regulators of follicular development. Here we show that these factors control cumulus cell metabolism, particularly glycolysis and cholesterol biosynthesis before the preovulatory surge of luteinizing hormone. Transcripts encoding enzymes for cholesterol biosynthesis were downregulated in both Bmp15-/- and Bmp15-/- Gdf9+/- double mutant cumulus cells, and in wild-type cumulus cells after removal of oocytes from cumulus-cell-oocyte complexes. Similarly, cholesterol synthesized de novo was reduced in these cumulus cells. This indicates that oocytes regulate cumulus cell cholesterol biosynthesis by promoting the expression of relevant transcripts. Furthermore, in wild-type mice, Mvk, Pmvk, Fdps, Sqle, Cyp51, Sc4mol and Ebp, which encode enzymes required for cholesterol synthesis, were highly expressed in cumulus cells compared with oocytes; and oocytes, in the absence of the surrounding cumulus cells, synthesized barely detectable levels of cholesterol. Furthermore, coincident with reduced cholesterol synthesis in double mutant cumulus cells, lower levels were also detected in cumulus-cell-enclosed double mutant oocytes compared with wild-type oocytes. Levels of cholesterol synthesis in double mutant cumulus cells and oocytes were partially restored by co-culturing with wild-type oocytes. Together, these results indicate that mouse oocytes are deficient in synthesizing cholesterol and require cumulus cells to provide products of the cholesterol biosynthetic pathway. Therefore, oocyte-derived paracrine factors, particularly, BMP15 and GDF9, promote cholesterol biosynthesis in cumulus cells, probably as compensation for oocyte deficiencies in cholesterol production.


Development | 2007

Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells

Koji Sugiura; You-Qiang Su; Francisco J. Diaz; Stephanie A. Pangas; Shweta Sharma; Karen Wigglesworth; Marilyn J. O'Brien; Martin M. Matzuk; Shunichi Shimasaki; John J. Eppig

Mammalian oocytes are deficient in their ability to carry out glycolysis. Therefore, the products of glycolysis that are necessary for oocyte development are provided to oocytes by companion cumulus cells. Mouse oocytes secrete paracrine factors that promote glycolysis in cumulus cells. The objective of this study was to identify paracrine factors secreted by oocytes that promote glycolysis and expression of mRNA encoding the glycolytic enzymes PFKP and LDHA. Candidates included growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and fibroblast growth factors (FGFs). Bmp15-/- and Gdf9+/- Bmp15-/- (double mutant, DM) cumulus cells exhibited reduced levels of both glycolysis and Pfkp and Ldha mRNA, and mutant oocytes were deficient in promoting glycolysis and expression of Pfkp and Ldha mRNA in cumulus cells of wild-type (WT) mice. Alone, neither recombinant BMP15, GDF9 nor FGF8 promoted glycolysis and expression of Pfkp and Ldha mRNA in WT cumulus cells. Co-treatment with BMP15 and FGF8 promoted glycolysis and increased expression of Pfkp and Ldha mRNA in WT cumulus cells to the same levels as WT oocytes; however, the combinations of BMP15/GDF9 or GDF9/FGF8 did not. Furthermore, SU5402, an FGF receptor-dependent protein kinase inhibitor, inhibited Pfkp and Ldha expression in cumulus cells promoted by paracrine oocyte factors. Therefore, oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.

Collaboration


Dive into the John J. Eppig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

You-Qiang Su

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Martin M. Matzuk

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria M. Viveiros

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge