Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Harada is active.

Publication


Featured researches published by John J. Harada.


Plant Molecular Biology | 1989

Common amino acid sequence domains among the LEA proteins of higher plants

Leon Dure; Martha L. Crouch; John J. Harada; Tuan-Hua David Ho; John Mundy; Ralph S. Quatrano; Terry L. Thomas; Zinmay Renee Sung

LEA proteins are late embryogenesis abundant in the seeds of many higher plants and are probably universal in occurrence in plant seeds. LEA mRNAs and proteins can be induced to appear at other stages in the plants life by desiccation stress and/or treatment with the plant hormone abscisic acid (ABA). A role in protecting plant structures during water loss is likely for these proteins, with ABA functioning in the stress transduction process. Presented here are conserved tracts of amino acid sequence among LEA proteins from several species that may represent domains functionally important in desiccation protection. Curiously, an 11 amino acid sequence motif is found tandemly repeated in a group of LEA proteins of vastly different sizes. Analysis of this motif suggests that it exists as an amphiphilic α helix which may serve as the basis for higher order structure.


Cell | 1998

Arabidopsis LEAFY COTYLEDON1 Is Sufficient to Induce Embryo Development in Vegetative Cells

Masa-aki Ohto; Kelly Matsudaira Yee; Marilyn A. L. West; Russell Lo; Raymond W. Kwong; Kazutoshi Yamagishi; Robert L. Fischer; Robert B. Goldberg; John J. Harada

The Arabidopsis LEAFY COTYLEDON1 (LEC1) gene is required for the specification of cotyledon identity and the completion of embryo maturation. We isolated the LEC1 gene and showed that it functions at an early developmental stage to maintain embryonic cell fate. The LEC1 gene encodes a transcription factor homolog, the CCAAT box-binding factor HAP3 subunit. LEC1 RNA accumulates only during seed development in embryo cell types and in endosperm tissue. Ectopic postembryonic expression of the LEC1 gene in vegetative cells induces the expression of embryo-specific genes and initiates formation of embryo-like structures. Our results suggest that LEC1 is an important regulator of embryo development that activates the transcription of genes required for both embryo morphogenesis and cellular differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development.

Sandra L. Stone; Linda W. Kwong; Kelly Matsudaira Yee; Julie M. Pelletier; Loı̈c Lepiniec; Robert L. Fischer; Robert B. Goldberg; John J. Harada

The Arabidopsis LEAFY COTYLEDON2 (LEC2) gene is a central embryonic regulator that serves critical roles both early and late during embryo development. LEC2 is required for the maintenance of suspensor morphology, specification of cotyledon identity, progression through the maturation phase, and suppression of premature germination. We cloned the LEC2 gene on the basis of its chromosomal position and showed that the predicted polypeptide contains a B3 domain, a DNA-binding motif unique to plants that is characteristic of several transcription factors. We showed that LEC2 RNA accumulates primarily during seed development, consistent with our finding that LEC2 shares greatest similarity with the B3 domain transcription factors that act primarily in developing seeds, VIVIPAROUS1/ABA INSENSITIVE3 and FUSCA3. Ectopic, postembryonic expression of LEC2 in transgenic plants induces the formation of somatic embryos and other organ-like structures and often confers embryonic characteristics to seedlings. Together, these results suggest that LEC2 is a transcriptional regulator that establishes a cellular environment sufficient to initiate embryo development.


Cell | 2002

DEMETER, a DNA Glycosylase Domain Protein, Is Required for Endosperm Gene Imprinting and Seed Viability in Arabidopsis

Yeonhee Choi; Mary Gehring; Lianna M. Johnson; Mike Hannon; John J. Harada; Robert B. Goldberg; Steven E. Jacobsen; Robert L. Fischer

We isolated mutations in Arabidopsis to understand how the female gametophyte controls embryo and endosperm development. For the DEMETER (DME) gene, seed viability depends only on the maternal allele. DME encodes a large protein with DNA glycosylase and nuclear localization domains. DME is expressed primarily in the central cell of the female gametophyte, the progenitor of the endosperm. DME is required for maternal allele expression of the imprinted MEDEA (MEA) Polycomb gene in the central cell and endosperm. Ectopic DME expression in endosperm activates expression of the normally silenced paternal MEA allele. In leaf, ectopic DME expression induces MEA and nicks the MEA promoter. Thus, a DNA glycosylase activates maternal expression of an imprinted gene in the central cell.


Cell | 2006

DEMETER DNA Glycosylase Establishes MEDEA Polycomb Gene Self-Imprinting by Allele-Specific Demethylation

Mary Gehring; Jin Hoe Huh; Tzung-Fu Hsieh; Jon Penterman; Yeonhee Choi; John J. Harada; Robert B. Goldberg; Robert L. Fischer

MEDEA (MEA) is an Arabidopsis Polycomb group gene that is imprinted in the endosperm. The maternal allele is expressed and the paternal allele is silent. MEA is controlled by DEMETER (DME), a DNA glycosylase required to activate MEA expression, and METHYLTRANSFERASE I (MET1), which maintains CG methylation at the MEA locus. Here we show that DME is responsible for endosperm maternal-allele-specific hypomethylation at the MEA gene. DME can excise 5-methylcytosine in vitro and when expressed in E. coli. Abasic sites opposite 5-methylcytosine inhibit DME activity and might prevent DME from generating double-stranded DNA breaks. Unexpectedly, paternal-allele silencing is not controlled by DNA methylation. Rather, Polycomb group proteins that are expressed from the maternal genome, including MEA, control paternal MEA silencing. Thus, DME establishes MEA imprinting by removing 5-methylcytosine to activate the maternal allele. MEA imprinting is subsequently maintained in the endosperm by maternal MEA silencing the paternal allele.


The Plant Cell | 1999

Mutations in FIE, a WD Polycomb Group Gene, Allow Endosperm Development without Fertilization

Nir Ohad; Ramin Yadegari; Linda Margossian; Mike Hannon; Daphna Michaeli; John J. Harada; Robert B. Goldberg; Robert L. Fischer

A fundamental problem in biology is to understand how fertilization initiates reproductive development. Higher plant reproduction is unique because two fertilization events are required for sexual reproduction. First, a sperm must fuse with the egg to form an embryo. A second sperm must then fuse with the adjacent central cell nucleus that replicates to form an endosperm, which is the support tissue required for embryo and/or seedling development. Here, we report cloning of the Arabidopsis FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) gene. The FIE protein is a homolog of the WD motif–containing Polycomb proteins from Drosophila and mammals. These proteins function as repressors of homeotic genes. A female gametophyte with a loss-of-function allele of fie undergoes replication of the central cell nucleus and initiates endosperm development without fertilization. These results suggest that the FIE Polycomb protein functions to suppress a critical aspect of early plant reproduction, namely, endosperm development, until fertilization occurs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors

Brandon H. Le; Chen Cheng; Anhthu Q. Bui; Javier A. Wagmaister; Kelli F. Henry; Julie M. Pelletier; Linda Kwong; Mark F. Belmonte; Ryan C. Kirkbride; Steve Horvath; Gary N. Drews; Robert L. Fischer; Jack K. Okamuro; John J. Harada; Robert B. Goldberg

Most of the transcription factors (TFs) responsible for controlling seed development are not yet known. To identify TF genes expressed at specific stages of seed development, including those unique to seeds, we used Affymetrix GeneChips to profile Arabidopsis genes active in seeds from fertilization through maturation and at other times of the plant life cycle. Seed gene sets were compared with those expressed in prefertilization ovules, germinating seedlings, and leaves, roots, stems, and floral buds of the mature plant. Most genes active in seeds are shared by all stages of seed development, although significant quantitative changes in gene activity occur. Each stage of seed development has a small gene set that is either specific at the level of the GeneChip or up-regulated with respect to genes active at other stages, including those that encode TFs. We identified 289 seed-specific genes, including 48 that encode TFs. Seven of the seed-specific TF genes are known regulators of seed development and include the LEAFY COTYLEDON (LEC) genes LEC1, LEC1-LIKE, LEC2, and FUS3. The rest represent different classes of TFs with unknown roles in seed development. Promoter-β-glucuronidase (GUS) fusion experiments and seed mRNA localization GeneChip datasets showed that the seed-specific TF genes are active in different compartments and tissues of the seed at unique times of development. Collectively, these seed-specific TF genes should facilitate the identification of regulatory networks that are important for programming seed development.


The Plant Cell | 1994

LEAFY COTYLEDON1 Is an Essential Regulator of Late Embryogenesis and Cotyledon Identity in Arabidopsis.

Mal. West; K. M. Yee; J. Danao; J. L. Zimmerman; Robert L. Fischer; R. B. Goldberg; John J. Harada

LEAFY COTYLEDON1 (LEC1) is an embryo defective mutation that affects cotyledon identity in Arabidopsis. Mutant cotyledons possess trichomes that are normally a leaf trait in Arabidopsis, and the cellular organization of these organs is intermediate between that of cotyledons and leaves from wild-type plants. We present several lines of evidence that indicate that the control of late embryogenesis is compromised by the mutation. First, mutant embryos are desiccation intolerant, yet embryos can be rescued before they dry to yield homozygous recessive plants that produce defective embryos exclusively. Second, although many genes normally expressed during embryonic development are active in the mutant, at least one maturation phase-specific gene is not activated. Third, the shoot apical meristem is activated precociously in mutant embryos. Fourth, in mutant embryos, several genes characteristic of postgerminative development are expressed at levels typical of wild-type seedlings rather than embryos. We conclude that postgerminative development is initiated prematurely and that embryonic and postgerminative programs operate simultaneously in mutant embryos. The pleiotropic effects of the mutation indicate that the LEC1 gene plays a fundamental role in regulating late embryogenesis. The role of LEC1 and its relationship to other genes involved in controlling late embryonic development are discussed.


The Plant Cell | 2003

LEAFY COTYLEDON1-LIKE Defines a Class of Regulators Essential for Embryo Development

Raymond W. Kwong; Anhthu Q. Bui; Hyeseung Lee; Linda W. Kwong; Robert L. Fischer; Robert B. Goldberg; John J. Harada

Arabidopsis LEAFY COTYLEDON1 (LEC1) is a critical regulator required for normal development during the early and late phases of embryogenesis that is sufficient to induce embryonic development in vegetative cells. LEC1 encodes a HAP3 subunit of the CCAAT binding transcription factor. We show that the 10 Arabidopsis HAP3 (AHAP3) subunits can be divided into two classes based on sequence identity in their central, conserved B domain. LEC1 and its most closely related subunit, LEC1-LIKE (L1L), constitute LEC1-type AHAP3 subunits, whereas the remaining AHAP3 subunits are designated non-LEC1-type. Similar to LEC1, L1L is expressed primarily during seed development. However, suppression of L1L gene expression induced defects in embryo development that differed from those of lec1 mutants, suggesting that LEC1 and L1L play unique roles in embryogenesis. We show that L1L expressed under the control of DNA sequences flanking the LEC1 gene suppressed genetically the lec1 mutation, suggesting that the LEC1-type B domains of L1L and LEC1 are critical for their function in embryogenesis. Our results also suggest that LEC1-type HAP3 subunits arose from a common origin uniquely in plants. Thus, L1L, an essential regulator of embryo development, defines a unique class of plant HAP3 subunits.


The Plant Cell | 1999

Imprinting of the MEDEA Polycomb Gene in the Arabidopsis Endosperm

Tetsu Kinoshita; Ramin Yadegari; John J. Harada; Robert B. Goldberg; Robert L. Fischer

In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin–dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals.

Collaboration


Dive into the John J. Harada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandon H. Le

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anhthu Q. Bui

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge