Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Letterio is active.

Publication


Featured researches published by John J. Letterio.


Nature Cell Biology | 1999

Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response.

Gillian S. Ashcroft; Xiao Yang; Adam B. Glick; Michael Weinstein; John J. Letterio; Diane Mizel; Mario A. Anzano; Teresa Greenwell-Wild; Sharon M. Wahl; Chu-Xia Deng; Anita B. Roberts

The generation of animals lacking SMAD proteins, which transduce signals from transforming growth factor-β (TGF-β), has made it possible to explore the contribution of the SMAD proteins to TGF-β activity in vivo. Here we report that, in contrast to predictions made on the basis of the ability of exogenous TGF-β to improve wound healing, Smad3-null (Smad3ex8/ex8) mice paradoxically show accelerated cutaneous wound healing compared with wild-type mice, characterized by an increased rate of re-epithelialization and significantly reduced local infiltration of monocytes. Smad3ex8/ex8 keratinocytes show altered patterns of growth and migration, and Smad3ex8/ex8 monocytes exhibit a selectively blunted chemotactic response to TGF-β. These data are, to our knowledge, the first to implicate Smad3 in specific pathways of tissue repair and in the modulation of keratinocyte and monocyte function in vivo.


Journal of Experimental Medicine | 2005

TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells

Julien C. Marie; John J. Letterio; Marc A. Gavin; Alexander Y. Rudensky

Transforming growth factor (TGF)-β1 is a major pluripotential cytokine with a pronounced immunosuppressive effect and its deficiency results in lethal autoimmunity in mice. However, mechanisms of its immunosuppressive action are not completely understood. Here, we report that TGF-β1 supports the maintenance of Foxp3 expression, regulatory function, and homeostasis in peripheral CD4+CD25+ regulatory T (T reg) cells, but is not required for their thymic development. We found that in 8–10-d-old TGF-β1–deficient mice, peripheral, but not thymic, T reg cells are significantly reduced in numbers. Moreover, our experiments suggest that a defect in TGF-β–mediated signaling in T reg cells is associated with a decrease in Foxp3 expression and suppressor activity. Thus, our results establish an essential link between TGF-β1 signaling in peripheral T reg cells and T reg cell maintenance in vivo.


The EMBO Journal | 1999

Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta.

Xiao Yang; John J. Letterio; Robert J. Lechleider; Lin Chen; Russ Hayman; Hua Gu; Anita B. Roberts; Chu-Xia Deng

SMAD3 is one of the intracellular mediators that transduces signals from transforming growth factor‐β (TGF‐β) and activin receptors. We show that SMAD3 mutant mice generated by gene targeting die between 1 and 8 months due to a primary defect in immune function. Symptomatic mice exhibit thymic involution, enlarged lymph nodes, and formation of bacterial abscesses adjacent to mucosal surfaces. Mutant T cells exhibit an activated phenotype in vivo, and are not inhibited by TGF‐β1 in vitro. Mutant neutrophils are also impaired in their chemotactic response toward TGF‐β. Chronic intestinal inflammation is infrequently associated with colonic adenocarcinoma in mice older than 6 months of age. These data suggest that SMAD3 has an important role in TGF‐β‐mediated regulation of T cell activation and mucosal immunity, and that the loss of these functions is responsible for chronic infection and the lethality of Smad3‐null mice.


Journal of Experimental Medicine | 2002

CD4+CD25+ Regulatory T Cells Can Mediate Suppressor Function in the Absence of Transforming Growth Factor β1 Production and Responsiveness

Ciriaco A. Piccirillo; John J. Letterio; Angela M. Thornton; Rebecca S. McHugh; Mizuko Mamura; Hidekazu Mizuhara; Ethan M. Shevach

CD4+CD25+ regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4+CD25−T cells and are potent suppressors of T cell activation in vitro. Their mechanism of suppression remains unknown, but most in vitro studies suggest that it is cell contact–dependent and cytokine independent. The role of TGF-β1 in CD4+CD25+ suppressor function remains unclear. While most studies have failed to reverse suppression with anti–transforming growth factor (TGF)-β1 in vitro, one recent study has reported that CD4+CD25+ T cells express cell surface TGF-β1 and that suppression can be completely abrogated by high concentrations of anti–TGF-β suggesting that cell-associated TGF-β1 was the primary effector of CD4+CD25+-mediated suppression. Here, we have reevaluated the role of TGF-β1 in CD4+CD25+-mediated suppression. Neutralization of TGF-β1 with either monoclonal antibody (mAb) or soluble TGF-βRII-Fc did not reverse in vitro suppression mediated by resting or activated CD4+CD25+ T cells. Responder T cells from Smad3−/− or dominant-negative TGF-β type RII transgenic (DNRIITg) mice, that are both unresponsive to TGF-β1–induced growth arrest, were as susceptible to CD4+CD25+-mediated suppression as T cells from wild-type mice. Furthermore, CD4+CD25+ T cells from neonatal TGF-β1−/− mice were as suppressive as CD4+CD25+ from TGF-β1+/+ mice. Collectively, these results demonstrate that CD4+CD25+ suppressor function can occur independently of TGF-β1.


Journal of Experimental Medicine | 2003

Transforming Growth Factor-β Production and Myeloid Cells Are an Effector Mechanism through Which CD1d-restricted T Cells Block Cytotoxic T Lymphocyte–mediated Tumor Immunosurveillance: Abrogation Prevents Tumor Recurrence

Masaki Terabe; So Matsui; Jong-Myun Park; Mizuko Mamura; Nancy Noben-Trauth; Debra D. Donaldson; WanJun Chen; Sharon M. Wahl; Steven R. Ledbetter; Bruce Pratt; John J. Letterio; William E. Paul; Jay A. Berzofsky

Our previous work demonstrated that cytotoxic T lymphocyte (CTL)-mediated tumor immunosurveillance of the 15-12RM tumor could be suppressed by a CD1d-restricted lymphocyte, most likely a natural killer (NK) T cell, which produces interleukin (IL)-13. Here we present evidence for the effector elements in this suppressive pathway. T cell–reconstituted recombination activating gene (RAG)2 knockout (KO) and RAG2/IL-4 receptor α double KO mice showed that inhibition of immunosurveillance requires IL-13 responsiveness by a non–T non–B cell. Such nonlymphoid splenocytes from tumor-bearing mice produced more transforming growth factor (TGF)-β, a potent inhibitor of CTL, ex vivo than such cells from naive mice, and this TGF-β production was dependent on the presence in vivo of both IL-13 and CD1d-restricted T cells. Ex vivo TGF-β production was also abrogated by depleting either CD11b+ or Gr-1+ cells from the nonlymphoid cells of tumor-bearing mice. Further, blocking TGF-β or depleting Gr-1+ cells in vivo prevented the tumor recurrence, implying that TGF-β made by a CD11b+ Gr-1+ myeloid cell, in an IL-13 and CD1d-restricted T cell–dependent mechanism, is necessary for down-regulation of tumor immunosurveillance. Identification of this stepwise regulation of immunosurveillance, involving CD1-restricted T cells, IL-13, myeloid cells, and TGF-β, explains previous observations on myeloid suppressor cells or TGF-β and provides insights for targeted approaches for cancer immunotherapy, including synergistic blockade of TGF-β and IL-13.


Journal of Clinical Investigation | 2006

Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance

Stephanie M. Dillon; Sudhanshu Agrawal; Kaustuv Banerjee; John J. Letterio; Timothy L. Denning; Kyra Oswald-Richter; Deborah J. Kasprowicz; Kathryn L. Kellar; Jeff Pare; Thomas E. Van Dyke; Steven F. Ziegler; Derya Unutmaz; Bali Pulendran

Emerging evidence suggests critical roles for APCs in suppressing immune responses. Here, we show that zymosan, a stimulus for TLR2 and dectin-1, regulates cytokine secretion in DCs and macrophages to induce immunological tolerance. First, zymosan induces DCs to secrete abundant IL-10 but little IL-6 and IL-12(p70). Induction of IL-10 is dependent on TLR2- and dectin-1-mediated activation of ERK MAPK via a mechanism independent of the activation protein 1 (AP-1) transcription factor c-Fos. Such DCs stimulate antigen-specific CD4+ T cells poorly due to IL-10 and the lack of IL-6. Second, zymosan induces F4-80+ macrophages in the splenic red pulp to secrete TGF-beta. Consistent with these effects on APCs, injection of zymosan plus OVA into mice results in OVA-specific T cells that secrete little or no Th1 or Th2 cytokines, but secrete robust levels of IL-10, and are unresponsive to challenge with OVA plus adjuvant. Finally, coinjection of zymosan with OVA plus LPS suppresses the response to OVA via a mechanism dependent on IL-10, TGF-beta, and lack of IL-6. Together, our data demonstrate that zymosan stimulates IL-10+ IL-12(p70)- IL-6low regulatory DCs and TGF-beta+ macrophages to induce immunological tolerance. These data suggest several targets for pharmacological modulation of immune responses in various clinical settings.


Journal of Clinical Investigation | 2002

Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects

Yu an Yang; Oksana Dukhanina; Binwu Tang; Mizuko Mamura; John J. Letterio; Jennifer MacGregor; Sejal C. Patel; Shahram Khozin; Zi Yao Liu; Jeffrey E. Green; Miriam R. Anver; Glenn Merlino; Lalage M. Wakefield

TGF-betas play diverse and complex roles in many biological processes. In tumorigenesis, they can function either as tumor suppressors or as pro-oncogenic factors, depending on the stage of the disease. We have developed transgenic mice expressing a TGF-beta antagonist of the soluble type II TGF-beta receptor:Fc fusion protein class, under the regulation of the mammary-selective MMTV-LTR promoter/enhancer. Biologically significant levels of antagonist were detectable in the serum and most tissues of this mouse line. The mice were resistant to the development of metastases at multiple organ sites when compared with wild-type controls, both in a tail vein metastasis assay using isogenic melanoma cells and in crosses with the MMTV-neu transgenic mouse model of metastatic breast cancer. Importantly, metastasis from endogenous mammary tumors was suppressed without any enhancement of primary tumorigenesis. Furthermore, aged transgenic mice did not exhibit the severe pathology characteristic of TGF-beta null mice, despite lifetime exposure to the antagonist. The data suggest that in vivo the antagonist may selectively neutralize the undesirable TGF-beta associated with metastasis, while sparing the regulatory roles of TGF-betas in normal tissues. Thus this soluble TGF-beta antagonist has potential for long-term clinical use in the prevention of metastasis.


Journal of Experimental Medicine | 2002

Bacteria-triggered CD4+ T Regulatory Cells Suppress Helicobacter hepaticus–induced Colitis

Marika C. Kullberg; Dragana Jankovic; Peter L. Gorelick; Patricia Caspar; John J. Letterio; Allen W. Cheever; Alan Sher

We have previously demonstrated that interleukin (IL)-10–deficient (IL-10 knockout [KO]) but not wild-type (WT) mice develop colitis after infection with Helicobacter hepaticus. Here, we show that infected recombination activating gene (RAG) KO mice develop intestinal inflammation after reconstitution with CD4+ T cells from IL-10 KO animals and that the cotransfer of CD4+ T cells from H. hepaticus–infected but not uninfected WT mice prevents this colitis. The disease-protective WT CD4+ cells are contained within the CD45RBlow fraction and unexpectedly were found in both the CD25+ and the CD25− subpopulations of these cells, their frequency being higher in the latter. The mechanism by which CD25+ and CD25− CD45RBlow CD4+ cells block colitis involves IL-10 and not transforming growth factor (TGF)-β, as treatment with anti–IL-10R but not anti–TGF-β monoclonal antibody abrogated their protective effect. In vitro, CD45RBlow CD4+ cells from infected WT mice were shown to produce IL-10 and suppress interferon-γ production by IL-10 KO CD4+ cells in an H. hepaticus antigen–specific manner. Together, our data support the concept that H. hepaticus infection results in the induction in WT mice of regulatory T cells that prevent bacteria-induced colitis. The induction of such cells in response to gut flora may be a mechanism protecting normal individuals against inflammatory bowel disease.


Nature | 2006

Smad4 signalling in T cells is required for suppression of gastrointestinal cancer

Byung-Gyu Kim; Cuiling Li; Wenhui Qiao; Mizuko Mamura; Barbara Kasperczak; Miriam R. Anver; Lawrence A. Wolfraim; Suntaek Hong; Elizabeth Mushinski; Michael Potter; Seong-Jin Kim; Xin-Yuan Fu; Chu-Xia Deng; John J. Letterio

SMAD4 (MAD homologue 4 (Drosophila)), also known as DPC4 (deleted in pancreatic cancer), is a tumour suppressor gene that encodes a central mediator of transforming growth factor-β signalling. Germline mutations in SMAD4 are found in over 50% of patients with familial juvenile polyposis, an autosomal dominant disorder characterized by predisposition to hamartomatous polyps and gastrointestinal cancer. Dense inflammatory cell infiltrates underlay grossly normal appearing, non-polypoid colonic and gastric mucosa of patients with familial juvenile polyposis. This prominent stromal component suggests that loss of SMAD4-dependent signalling in cells within the epithelial microenvironment has an important role in the evolution of intestinal tumorigenesis in this syndrome. Here we show that selective loss of Smad4-dependent signalling in T cells leads to spontaneous epithelial cancers throughout the gastrointestinal tract in mice, whereas epithelial-specific deletion of the Smad4 gene does not. Tumours arising within the colon, rectum, duodenum, stomach and oral cavity are stroma-rich with dense plasma cell infiltrates. Smad4-/- T cells produce abundant TH2-type cytokines including interleukin (IL)-5, IL-6 and IL-13, known mediators of plasma cell and stromal expansion. The results support the concept that cancer, as an outcome, reflects the loss of the normal communication between the cellular constituents of a given organ, and indicate that Smad4-deficient T cells ultimately send the wrong message to their stromal and epithelial neighbours.


Journal of Immunology | 2004

IL-13 Activates a Mechanism of Tissue Fibrosis That Is Completely TGF-β Independent

Mallika Kaviratne; Matthias Hesse; Mary Leusink; Allen W. Cheever; Stephen J. Davies; James H. McKerrow; Lalage M. Wakefield; John J. Letterio; Thomas A. Wynn

Fibrosis is a characteristic feature in the pathogenesis of a wide spectrum of diseases. Recently, it was suggested that IL-13-dependent fibrosis develops through a TGF-β1 and matrix metalloproteinase-9-dependent (MMP-9) mechanism. However, the significance of this pathway in a natural disorder of fibrosis was not investigated. In this study, we examined the role of TGF-β in IL-13-dependent liver fibrosis caused by Schistosoma mansoni infection. Infected IL-13−/− mice showed an almost complete abrogation of fibrosis despite continued and undiminished production of TGF-β1. Although MMP-9 activity was implicated in the IL-13 pathway, MMP-9−/− mice displayed no reduction in fibrosis, even when chronically infected. To directly test the requirement for TGF-β, studies were also performed with neutralizing anti-TGF-β Abs, soluble antagonists (soluble TGF-βR-Fc), and Tg mice (Smad3−/− and TGF-βRII-Fc Tg) that have disruptions in all or part of the TGF-β signaling cascade. In all cases, fibrosis developed normally and with kinetics similar to wild-type mice. Production of IL-13 was also unaffected. Finally, several genes, including interstitial collagens, several MMPs, and tissue inhibitors of metalloprotease-1 were up-regulated in TGF-β1−/− mice by IL-13, demonstrating that IL-13 activates the fibrogenic machinery directly. Together, these studies provide unequivocal evidence of a pathway of fibrogenesis that is IL-13 dependent but TGF-β1 independent, illustrating the importance of targeting IL-13 directly in the treatment of infection-induced fibrosis.

Collaboration


Dive into the John J. Letterio's collaboration.

Top Co-Authors

Avatar

Anita B. Roberts

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Byung-Gyu Kim

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Tej K. Pareek

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence A. Wolfraim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sung Hee Choi

Seoul National University Bundang Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew G. Geiser

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Janet Robinson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alex Y. Huang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ashok B. Kulkarni

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge