Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Reho is active.

Publication


Featured researches published by John J. Reho.


Biology of Sex Differences | 2012

Alterations in vasomotor systems and mechanics of resistance-sized mesenteric arteries from SHR and WKY male rats following in vivo testosterone manipulation

Jonathan Toot; John J. Reho; Rolando J. Ramirez; Jacqueline Novak; Daniel Ely

BackgroundTestosterone (T) and the sympathetic nervous system each contribute to the pathology of hypertension. Altered blood vessel reactivity is also associated with the pathology of high blood pressure. The purpose of this study was to examine the effects of T manipulation in the regulation of resistance-sized blood vessel reactivity.MethodsAdult spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) male rats at 8 weeks of age were used. The rats were divided into groups consisting of gonadally intact controls (CONT), castrate with sham implant (CAST) and castrate with T implant (CAST + T) (n = 6 to 12 per group). Following a short-term period of T treatment (approximately 4 weeks), plasma norepinephrine (NE) and plasma T were assessed by performing high-performance liquid chromatography and RIA, respectively. Resistance-sized mesenteric artery reactivity was assessed on a pressurized arteriograph for myogenic reactivity (MYO), phenylephrine (PE) responsiveness and passive structural mechanics.ResultsSHR and WKY males exhibited similar physiological trends in T manipulation, with castration significantly lowering plasma T and NE and T replacement significantly increasing plasma T and NE. T manipulation in general resulted in significant alterations in MYO of second-order mesenteric arteries, with T replacement decreasing MYO in SHR (P < 0.05) compared to CONT, T replacement increasing MYO, and CAST decreasing MYO in WKY rats (P < 0.001) compared to CONT rats. Additionally, PE-induced constriction was significantly altered in both strains following T treatment, with the effective concentration of PE to constrict the vessel to 50% of the total diameter significantly increased in the CAST + T SHR compared to CONT (P < 0.05). Comparisons of passive structural mechanics between SHR and WKY treatment groups indicated in SHR a significantly increased wall-to-lumen ratio and decreased circumferential wall stress compared to WKY treatment groups.ConclusionsThese data suggest that T and NE are involved in a complex interaction with both myogenic reactivity and structural alterations of resistance-sized blood vessels and that these factors likely contribute to the development and maintenance of hypertension.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Smooth muscle contractile diversity in the control of regional circulations

John J. Reho; Xiaoxu Zheng; Steven A. Fisher

Each regional circulation has unique requirements for blood flow and thus unique mechanisms by which it is regulated. In this review we consider the role of smooth muscle contractile diversity in determining the unique properties of selected regional circulations and its potential influence on drug targeting in disease. Functionally smooth muscle diversity can be dichotomized into fast versus slow contractile gene programs, giving rise to phasic versus tonic smooth muscle phenotypes, respectively. Large conduit vessel smooth muscle is of the tonic phenotype; in contrast, there is great smooth muscle contractile diversity in the other parts of the vascular system. In the renal circulation, afferent and efferent arterioles are arranged in series and determine glomerular filtration rate. The afferent arteriole has features of phasic smooth muscle, whereas the efferent arteriole has features of tonic smooth muscle. In the splanchnic circulation, the portal vein and hepatic artery are arranged in parallel and supply blood for detoxification and metabolism to the liver. Unique features of this circulation include the hepatic-arterial buffer response to regulate blood flow and the phasic contractile properties of the portal vein. Unique features of the pulmonary circulation include the low vascular resistance and hypoxic pulmonary vasoconstriction, the latter attribute inherent to the smooth muscle cells but the mechanism uncertain. We consider how these unique properties may allow for selective drug targeting of regional circulations for therapeutic benefit and point out gaps in our knowledge and areas in need of further investigation.


Clinical Science | 2017

Oxidative and inflammatory signals in obesity-associated vascular abnormalities

John J. Reho; Kamal Rahmouni

Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function.


Stress | 2011

Colony social stress differentially alters blood pressure and resistance-sized mesenteric artery reactivity in SHR/y and WKY male rats.

Jonathan Toot; John J. Reho; Jacqueline Novak; Gail Dunphy; Daniel Ely; Rolando J. Ramirez

Increased sympathetic nervous system (SNS) activity, testosterone, and spontaneously hypertensive rat Y chromosome (SHR Yc) play a role in a genetic model of hypertension. Male rats with the SHR Yc and Wistar-Kyoto (WKY) autosomes (denoted SHR/y) exhibit these characteristics when compared to rats with the WKY Yc and WKY autosomes (denoted WKY). We hypothesized that chronic social stress will increase blood pressure and SNS activity more in SHR/y males compared to WKY males, resulting in increased myogenic reactivity along with decreased vasoconstriction of small mesenteric arteries. SHR/y and WKY males were housed in strain- specific colonies (10 males with 10 females) or as controls (10 males). Systolic blood pressure (SBP) and blood samples were collected prior to termination. Second-order mesenteric arteries were studied using a pressure arteriograph in which myogenic reactivity and phenylephrine (PE) responsiveness were measured. SHR/y colony SBP, and circulating norepinephrine and testosterone concentrations were elevated compared to control and WKY colony males (p < 0.05). Mesenteric artery myogenic reactivity was increased in SHR/y colony males (p < 0.001). Mesenteric arteries from SHR/y colony males exhibited a significant decrease in PE-induced constriction. Colony social stress elevated both SNS activity and testosterone level which may be responsible for the increased mesenteric artery myogenic reactivity, and SBP as noted in SHR/y males.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Redox signaling and splicing dependent change in myosin phosphatase underlie early versus late changes in NO vasodilator reserve in a mouse LPS model of sepsis

John J. Reho; Xiaoxu Zheng; Laureano D. Asico; Steven A. Fisher

Microcirculatory dysfunction may cause tissue malperfusion and progression to organ failure in the later stages of sepsis, but the role of smooth muscle contractile dysfunction is uncertain. Mice were given intraperitoneal LPS, and mesenteric arteries were harvested at 6-h intervals for analyses of gene expression and contractile function by wire myography. Contractile (myosin and actin) and regulatory [myosin light chain kinase and phosphatase subunits (Mypt1, CPI-17)] mRNAs and proteins were decreased in mesenteric arteries at 24 h concordant with reduced force generation to depolarization, Ca(2+), and phenylephrine. Vasodilator sensitivity to DEA/nitric oxide (NO) and cGMP under Ca(2+) clamp were increased at 24 h after LPS concordant with a switch to Mypt1 exon 24- splice variant coding for a leucine zipper (LZ) motif required for PKG-1α activation of myosin phosphatase. This was reproduced by smooth muscle-specific deletion of Mypt1 exon 24, causing a shift to the Mypt1 LZ+ isoform. These mice had significantly lower resting blood pressure than control mice but similar hypotensive responses to LPS. The vasodilator sensitivity of wild-type mice to DEA/NO, but not cGMP, was increased at 6 h after LPS. This was abrogated in mice with a redox dead version of PKG-1α (Cys42Ser). Enhanced vasorelaxation in early endotoxemia is mediated by redox signaling through PKG-1α but in later endotoxemia by myosin phosphatase isoform shifts enhancing sensitivity to NO/cGMP as well as smooth muscle atrophy. Muscle atrophy and modulation may be a novel target to suppress microcirculatory dysfunction; however, inactivation of inducible NO synthase, treatment with the IL-1 antagonist IL-1ra, or early activation of α-adrenergic signaling did not suppressed this response.


American Journal of Physiology-cell Physiology | 2015

TRA2β controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle.

Xiaoxu Zheng; John J. Reho; Brunhilde Wirth; Steven A. Fisher

Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2β (Tra2β), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2β within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2β causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2β is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.


Hypertension in Pregnancy | 2011

Hypertension Induced by Episodic Reductions in Uteroplacental Blood Flow in Gravid Rat

John J. Reho; Jennifer Peck; Jacqueline Novak; Rolando J. Ramirez

Background. The etiology of preeclampsia remains unclear. Animal modeling of preeclampsia has been useful; however, no model to date represents episodic changes in uteroplacental blood flow that may occur in preeclampsia. Objective. To develop a gravid rat model characterized by episodic reductions in uteroplacental blood flow. Method. Pregnant Sprague Dawley rats were used and subjected to SHAM, reduced uterine perfusion pressure (RUPP), or aortic occlusion on gestational Day 14. Aortic occlusion surgery consisted of implantation of a silastic vascular occluder around the abdominal aorta and silver clips around the uterine–ovarian arteries. Aortic occlusion animals were subjected to five consecutive days of occlusion (40% reduction) each session lasting 1 h. On Day 21, maternal mean arterial pressure (MAP) and fetal morphology were assessed. For isolated blood vessels, resistance-sized mesenteric arteries were harvested and mounted on a pressure arteriograph. Result. Occluder animals experienced a 10 mmHg rise in MAP as compared to SHAM (p < 0.05), and RUPP MAP was significantly increased as compared to control subjects (p < 0.05). Pups from Occluder animals exhibited a decrease in fetal weight as compared to SHAM (p < 0.05), but an increase in fetal weight as compared to RUPP (p < 0.05). Myogenic reactivity of second-order mesenteric arteries increased in Occluder animals as compared to SHAM (p < 0.05), but were similar to that of RUPP. Conclusion. Episodic reductions in uteroplacental blood flow play a crucial role in the altered vascular reactivity seen in Occluder animals and may represent a new model to investigate the mechanisms associated with episodic reductions in uteroplacental blood flow in pathological pregnancies.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats.

Mark W. Chapleau; Diane L. Rotella; John J. Reho; Kamal Rahmouni; Harald M. Stauss

Parasympathetic activity is often reduced in hypertension and can elicit anti-inflammatory mechanisms. Thus we hypothesized that chronic vagal nerve stimulation (VNS) may alleviate cardiovascular end-organ damage in stroke-prone spontaneously hypertensive rats. Vagal nerve stimulators were implanted, a high-salt diet initiated, and the stimulators turned on (VNS, n = 10) or left off (sham, n = 14) for 4 wk. Arterial pressure increased equally in both groups. After 4 wk, endothelial function, assessed by in vivo imaging of the long posterior ciliary artery (LPCA) after stimulation (pilocarpine) and inhibition (N(ω)-nitro-l-arginine methyl ester) of endothelial nitric oxide synthase (eNOS), had significantly declined (-2.3 ± 1.2 μm, P < 0.05) in sham, but was maintained (-0.7 ± 0.8 μm, nonsignificant) in VNS. Furthermore, aortic eNOS activation (phosphorylated to total eNOS protein content ratio) was greater in VNS (0.83 ± 0.07) than in sham (0.47 ± 0.08, P < 0.05). After only 3 wk, ultrasound imaging of the aorta demonstrated decreased aortic strain (-9.7 ± 2.2%, P < 0.05) and distensibility (-2.39 ± 0.49 1,000/mmHg, P < 0.05) and increased pulse-wave velocity (+2.4 ± 0.7 m/s, P < 0.05) in sham but not in VNS (-3.8 ± 3.8%, -0.70 ± 1.4 1,000/mmHg, and +0.1 ± 0.7 m/s, all nonsignificant). Interleukin (IL)-6 serum concentrations tended to be higher in VNS than in sham (34.3 ± 8.3 vs. 16.1 ± 4.6 pg/ml, P = 0.06), and positive correlations were found between NO-dependent relaxation of the LPCA and serum levels of IL-6 (r = +0.70, P < 0.05) and IL-10 (r = +0.56, P < 0.05) and between aortic eNOS activation and IL-10 (r = +0.48, P < 0.05). In conclusion, chronic VNS prevents hypertension-induced endothelial dysfunction and aortic stiffening in an animal model of severe hypertension. We speculate that anti-inflammatory mechanisms may contribute to these effects.


Physiological Reports | 2015

Unique gene program of rat small resistance mesenteric arteries as revealed by deep RNA sequencing

John J. Reho; Amol C. Shetty; Rachael P. Dippold; Anup Mahurkar; Steven A. Fisher

Deep sequencing of RNA samples from rat small mesenteric arteries (MA) and aorta (AO) identified common and unique features of their gene programs. ~5% of mRNAs were quantitatively differentially expressed in MA versus AO. Unique transcriptional control in MA smooth muscle is suggested by the selective or enriched expression of transcription factors Nkx2‐3, HAND2, and Tcf21 (Capsulin). Enrichment in AO of PPAR transcription factors and their target genes of mitochondrial function, lipid metabolism, and oxidative phosphorylation is consistent with slow (oxidative) tonic smooth muscle. In contrast MA was enriched in contractile and calcium channel mRNAs suggestive of components of fast (glycolytic) phasic smooth muscle. Myosin phosphatase regulatory subunit paralogs Mypt1 and p85 were expressed at similar levels, while smooth muscle MLCK was the only such kinase expressed, suggesting functional redundancy of the former but not the latter in accordance with mouse knockout studies. With regard to vaso‐regulatory signals, purinergic receptors P2rx1 and P2rx5 were reciprocally expressed in MA versus AO, while the olfactory receptor Olr59 was enriched in MA. Alox15, which generates the EDHF HPETE, was enriched in MA while eNOS was equally expressed, consistent with the greater role of EDHF in the smaller arteries. mRNAs that were not expressed at a level consistent with impugned function include skeletal myogenic factors, IKK2, nonmuscle myosin, and Gnb3. This screening analysis of gene expression in the small mesenteric resistance arteries suggests testable hypotheses regarding unique aspects of small artery function in the regional control of blood flow.


American Journal of Physiology-heart and Circulatory Physiology | 2016

A splice variant of the myosin phosphatase regulatory subunit tunes arterial reactivity and suppresses response to salt loading

John J. Reho; Doreswamy Kenchegowda; Laureano D. Asico; Steven A. Fisher

The cGMP activated kinase cGK1α is targeted to its substrates via leucine zipper (LZ)-mediated heterodimerization and thereby mediates vascular smooth muscle (VSM) relaxation. One target is myosin phosphatase (MP), which when activated by cGK1α results in VSM relaxation even in the presence of activating calcium. Variants of MP regulatory subunit Mypt1 are generated by alternative splicing of the 31 nt exon 24 (E24), which, by changing the reading frame, codes for isoforms that contain or lack the COOH-terminal LZ motif (E24+/LZ-; E24-/LZ+). Expression of these isoforms is vessel specific and developmentally regulated, modulates in disease, and is proposed to confer sensitivity to nitric oxide (NO)/cGMP-mediated vasorelaxation. To test this, mice underwent Tamoxifen-inducible and smooth muscle-specific knockout of E24 (E24 cKO) after weaning. Deletion of a single allele of E24 (shift to Mypt1 LZ+) enhanced vasorelaxation of first-order mesenteric arteries (MA1) to diethylamine-NONOate (DEA/NO) and to cGMP in permeabilized and calcium-clamped arteries and lowered blood pressure. There was no further effect of deletion of both E24 alleles, indicating high sensitivity to shift of Mypt1 isoforms. However, a unique property of MA1s from homozygous E24 cKOs was significantly reduced force generation to α-adrenergic activation. Furthermore 2 wk of high-salt (4% NaCl) diet increased MA1 force generation to phenylephrine in control mice, a response that was markedly suppressed in the E24 cKO homozygotes. Thus Mypt1 E24 splice variants tune arterial reactivity and could be worthy targets for lowering vascular resistance in disease states.

Collaboration


Dive into the John J. Reho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge