Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Wiens is active.

Publication


Featured researches published by John J. Wiens.


Ecology Letters | 2010

Niche conservatism as an emerging principle in ecology and conservation biology.

John J. Wiens; David D. Ackerly; Andrew P. Allen; Brian L. Anacker; Lauren B. Buckley; Howard V. Cornell; Ellen I. Damschen; T. Jonathan Davies; John-Arvid Grytnes; Susan Harrison; Bradford A. Hawkins; Robert D. Holt; Christy M. McCain; Patrick R. Stephens

The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within-species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?).


Molecular Phylogenetics and Evolution | 2011

A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians.

R. Alexander Pyron; John J. Wiens

The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.


BMC Evolutionary Biology | 2013

A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

R. Alexander Pyron; Frank T. Burbrink; John J. Wiens

BackgroundThe extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata.ResultsThe estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy.ConclusionsWe present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes.


Systematic Biology | 2002

Delimiting Species Using DNA and Morphological Variation and Discordant Species Limits in Spiny Lizards (Sceloporus)

John J. Wiens; Tonya A. Penkrot

Haplotype phylogenies based on DNA sequence data are increasingly being used to test traditional species-level taxonomies based on morphology. However, few studies have critically compared species limits based on morphological and DNA data, and the methods used to delimit species using either type of data are only rarely explained. In this paper, we review three approaches for species delimitation (tree-based with DNA data and tree-based and character-based with morphological data) and propose explicit protocols for each. We then compare species limits inferred from these approaches, using morphological and mtDNA data for the Yarrows spiny lizard (Sceloporus jarrovii), a traditionally polytypic species from the southwestern United States and Mexico. All three approaches support division of S. jarrovii into five species, but only two species are the same among the three approaches. We find the greatest support for the five species that are delimited based on mtDNA data, and we argue that mtDNA data may have important (and previously unappreciated) advantages for species delimitation. Because different data and approaches can disagree so extensively, our results demonstrate that the methodology of species delimitation is a critical issue in systematics.


Systematic Biology | 2003

Missing Data, Incomplete Taxa, and Phylogenetic Accuracy

John J. Wiens

The problem of missing data is often considered to be the most important obstacle in reconstructing the phylogeny of fossil taxa and in combining data from diverse characters and taxa for phylogenetic analysis. Empirical and theoretical studies show that including highly incomplete taxa can lead to multiple equally parsimonious trees, poorly resolved consensus trees, and decreased phylogenetic accuracy. However, the mechanisms that cause incomplete taxa to be problematic have remained unclear. It has been widely assumed that incomplete taxa are problematic because of the proportion or amount of missing data that they bear. In this study, I use simulations to show that the reduced accuracy associated with including incomplete taxa is caused by these taxa bearing too few complete characters rather than too many missing data cells. This seemingly subtle distinction has a number of important implications. First, the so-called missing data problem for incomplete taxa is, paradoxically, not directly related to their amount or proportion of missing data. Thus, the level of completeness alone should not guide the exclusion of taxa (contrary to common practice), and these results may explain why empirical studies have sometimes found little relationship between the completeness of a taxon and its impact on an analysis. These results also (1) suggest a more effective strategy for dealing with incomplete taxa, (2) call into question a justification of the controversial phylogenetic supertree approach, and (3) show the potential for the accurate phylogenetic placement of highly incomplete taxa, both when combining diverse data sets and when analyzing relationships of fossil taxa.


Systematic Biology | 1998

Combining data sets with different phylogenetic histories.

John J. Wiens

The possibility that two data sets may have different underlying phylogenetic histories (such as gene trees that deviate from species trees) has become an important argument against combining data in phylogenetic analysis. However, two data sets sampled for a large number of taxa may differ in only part of their histories. This is a realistic scenario and one in which the relative advantages of combined, separate, and consensus analysis become much less clear. I propose a simple methodology for dealing with this situation that involves (1) partitioning the available data to maximize detection of different histories, (2) performing separate analyses of the data sets, and (3) combining the data but considering questionable or unresolved those parts of the combined tree that are strongly contested in the separate analyses (and which therefore may have different histories) until a majority of unlinked data sets support one resolution over another. In support of this methodology, computer simulations suggest that (1) the accuracy of combined analysis for recovering the true species phylogeny may exceed that of either of two separately analyzed data sets under some conditions, particularly when the mismatch between phylogenetic histories is small and the estimates of the underlying histories are imperfect (few characters, high homoplasy, or both) and (2) combined analysis provides a poor estimate of the species tree in areas of the phylogenies with different histories but gives an improved estimate in regions that share the same history. Thus, when there is a localized mismatch between the histories of two data sets, the separate, consensus, and combined analyses may all give unsatisfactory results in certain parts of the phylogeny. Similarly, approaches that allow data combination only after a global test of heterogeneity will suffer from the potential failings of either separate or combined analysis, depending on the outcome of the test. Excision of conflicting taxa is also problematic, in that doing so may obfuscate the position of conflicting taxa within a larger tree, even when their placement is congruent between data sets. Application of the proposed methodology to molecular and morphological data sets for Sceloporus lizards is discussed.


Evolution | 2004

SPECIATION AND ECOLOGY REVISITED: PHYLOGENETIC NICHE CONSERVATISM AND THE ORIGIN OF SPECIES

John J. Wiens

Abstract Evolutionary biologists have often suggested that ecology is important in speciation, in that natural selection may drive adaptive divergence between lineages that inhabit different environments. I suggest that it is the tendency of lineages to maintain their ancestral ecological niche (phylogenetic niche conservatism) and their failure to adapt to new environments which frequently isolates incipient species and begins the process of speciation. Niche conservatism may be an important and widespread component of allopatric speciation but is largely unstudied. The perspective outlined here suggests roles for key microevolutionary processes (i.e., natural selection, adaptation) that are strikingly different from those proposed in previous literature on ecology and speciation. Yet, this perspective is complementary to the traditional view because it focuses on a different temporal stage of the speciation process.


Trends in Ecology and Evolution | 2008

Integrating GIS-based environmental data into evolutionary biology

Kenneth H. Kozak; Catherine H. Graham; John J. Wiens

Many evolutionary processes are influenced by environmental variation over space and time, including genetic divergence among populations, speciation and evolutionary change in morphology, physiology and behaviour. Yet, evolutionary biologists have generally not taken advantage of the extensive environmental data available from geographic information systems (GIS). For example, studies of phylogeography, speciation and character evolution often ignore or use only crude proxies for environmental variation (e.g. latitude and distance between populations). Here, we describe how the integration of GIS-based environmental data, along with new spatial tools, can transform evolutionary studies and reveal new insights into the ecological causes of evolutionary patterns.


Journal of Biomedical Informatics | 2006

Missing data and the design of phylogenetic analyses

John J. Wiens

Concerns about the deleterious effects of missing data may often determine which characters and taxa are included in phylogenetic analyses. For example, researchers may exclude taxa lacking data for some genes or exclude a gene lacking data in some taxa. Yet, there may be very little evidence to support these decisions. In this paper, I review the effects of missing data on phylogenetic analyses. Recent simulations suggest that highly incomplete taxa can be accurately placed in phylogenies, as long as many characters have been sampled overall. Furthermore, adding incomplete taxa can dramatically improve results in some cases by subdividing misleading long branches. Adding characters with missing data can also improve accuracy, although there is a risk of long-branch attraction in some cases. Consideration of how missing data does (or does not) affect phylogenetic analyses may allow researchers to design studies that can reconstruct large phylogenies quickly, economically, and accurately.


The American Naturalist | 2006

Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity.

John J. Wiens; Catherine H. Graham; Daniel S. Moen; Sarah A. Smith; Tod W. Reeder

Why are there more species in the tropics than in temperate regions? In recent years, this long‐standing question has been addressed primarily by seeking environmental correlates of diversity. But to understand the ultimate causes of diversity patterns, we must also examine the evolutionary and biogeographic processes that directly change species numbers (i.e., speciation, extinction, and dispersal). With this perspective, we dissect the latitudinal diversity gradient in hylid frogs. We reconstruct a phylogeny for 124 hylid species, estimate divergence times and diversification rates for major clades, reconstruct biogeographic changes, and use ecological niche modeling to identify climatic variables that potentially limit dispersal. We find that hylids originated in tropical South America and spread to temperate regions only recently (leaving limited time for speciation). There is a strong relationship between the species richness of each region and when that region was colonized but not between the latitudinal positions of clades and their rates of diversification. Temperature seasonality seemingly limits dispersal of many tropical clades into temperate regions and shows significant phylogenetic conservatism. Overall, our study illustrates how two general principles (niche conservatism and the time‐for‐speciation effect) may help explain the latitudinal diversity gradient as well as many other diversity patterns across taxa and regions.

Collaboration


Dive into the John J. Wiens's collaboration.

Top Co-Authors

Avatar

Tod W. Reeder

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Kozak

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul T. Chippindale

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

R. Alexander Pyron

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Ted M. Townsend

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack W. Sites

Brigham Young University

View shared research outputs
Researchain Logo
Decentralizing Knowledge