Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John K. Eldredge is active.

Publication


Featured researches published by John K. Eldredge.


Science | 2005

Small-Molecule Inhibition of TNF-α

Molly M. He; Annemarie Stroustrup Smith; Johan D. Oslob; William Michael Flanagan; Andrew C. Braisted; Adrian Whitty; Mark T. Cancilla; Jun Wang; Alexey A. Lugovskoy; Josh C. Yoburn; Amy D. Fung; Graham K. Farrington; John K. Eldredge; Eric S. Day; Leslie A. Cruz; Teresa G. Cachero; Stephan K. Miller; Jessica E. Friedman; Ingrid C. Choong; Brian C. Cunningham

We have identified a small-molecule inhibitor of tumor necrosis factor α (TNF-α) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF-α activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600-fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-α subunits.


Protein Science | 2006

Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design

Louis A. Clark; P. Ann Boriack-Sjodin; John K. Eldredge; Christopher Fitch; Bethany Friedman; Karl Hanf; Matthew Jarpe; Stefano F. Liparoto; You Li; Alexey Lugovskoy; Stephan Miller; Mia Rushe; Woody Sherman; Kenneth J. Simon; Herman W. T. van Vlijmen

Improving the affinity of a high‐affinity protein–protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure‐based computational methods to optimize the binding affinity of an antibody fragment to the I‐domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd ∼7 nM) and the moderate resolution (2.8 Å) of the starting crystal structure, the affinity was increased by an order of magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of a high‐affinity quadruple mutant complex at 2.2 Å. The structure shows that the design makes the predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher‐affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant binding affinity prediction protocol and improvement of the single‐mutant success rate. Our results indicate that structure‐based computational design can be successfully applied to further improve the binding of high‐affinity antibodies.


Protein Science | 2010

Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis.

R. Blake Pepinsky; Laura Silvian; Steven A. Berkowitz; Graham K. Farrington; Alexey Lugovskoy; Lee Walus; John K. Eldredge; Allan D. Capili; Sha Mi; Christilyn Graff; Ellen Garber

Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti‐LINGO‐1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.


The FASEB Journal | 2014

A novel platform for engineering blood-brain barrier-crossing bispecific biologics

Graham K. Farrington; Nadia L. Caram-Salas; Arsalan S. Haqqani; Eric Brunette; John K. Eldredge; Blake Pepinsky; Giovanna Antognetti; Ewa Baumann; Wen Ding; Ellen Garber; Susan Jiang; Christie Delaney; Eve Boileau; William P. Sisk; Danica B. Stanimirovic

The blood‐brain barrier (BBB) prevents the access of therapeutic antibodies to central nervous system (CNS) targets. The engineering of bispecific antibodies in which a therapeutic “arm” is combined with a BBB‐transcytosing arm can significantly enhance their brain delivery. The BBB‐permeable single‐domain antibody FC5 was previously isolated by phenotypic panning of a naive llama single‐domain antibody phage display library. In this study, FC5 was engineered as a mono‐ and bivalent fusion with the human Fc domain to optimize it as a modular brain delivery platform. In vitro studies demonstrated that the bivalent fusion of FC5 with Fc increased the rate of transcytosis (Papp) across brain endothelial monolayer by 25% compared with monovalent fusion. Up to a 30‐fold enhanced apparent brain exposure (derived from serum and cerebrospinal fluid pharmacokinetic profiles) of FC5‐compared with control domain antibody‐Fc fusions after systemic dosing in rats was observed. Systemic pharmacological potency was evaluated in the Hargreaves model of inflammatory pain using the BBB‐impermeable neuropeptides dalargin and neuropeptide Y chemically conjugated with FC5‐Fc fusion proteins. Improved serum pharmacokinetics of Fc‐fused FC5 contributed to a 60‐fold increase in pharmacological potency compared with the single‐domain version of FC5; bivalent and monovalent FC5 fusions with Fc exhibited similar systemic pharmacological potency. The study demonstrates that modular incorporation of FC5 as the BBB‐carrier arm in bispecific antibodies or antibody‐drug conjugates offers an avenue to develop pharmacologically active biotherapeutics for CNS indications.—Farrington, G. K., Caram‐Salas, N., Haqqani, A. S., Brunette, E., Eldredge, J., Pepinsky, B., Antognetti, G., Baumann, E., Ding, W., Garber, E., Jiang, S., Delaney, C., Boileau, E., Sisk, W. P., Stanimirovic, D. B., A novel platform for engineering blood‐brain barrier‐crossing bispecific biologics. FASEB J. 28, 4764–4778 (2014). www.fasebj.org


Protein Engineering Design & Selection | 2008

An antibody loop replacement design feasibility study and a loop-swapped dimer structure

Louis A. Clark; P. Ann Boriack-Sjodin; Eric S. Day; John K. Eldredge; Christopher Fitch; Matt Jarpe; Stephan Miller; You Li; Ken Simon; Herman W. T. van Vlijmen

A design approach was taken to investigate the feasibility of replacing single complementarity determining region (CDR) antibody loops. This approach may complement simpler mutation-based strategies for rational antibody design by expanding conformation space. Enormous crystal structure diversity is available, making CDR loops logical targets for structure-based design. A detailed analysis for the L1 loop shows that each loop length takes a distinct conformation, thereby allowing control on a length scale beyond that accessible to simple mutations. The L1 loop in the anti-VLA1 antibody was replaced with the L2 loop residues longer in an attempt to add an additional hydrogen bond and fill space on the antibody-antigen interface. The designs expressed well, but failed to improve affinity. In an effort to learn more, one design was crystallized and data were collected at 1.9 A resolution. The designed L1 loop takes the qualitatively desired conformation; confirming that loop replacement by design is feasible. The crystal structure also shows that the outermost loop (residues Leu51-Ser68) is domain swapped with another monomer. Tryptophan fluorescence measurements were used to monitor unfolding as a function of temperature and indicate that the loop involved in domain swapping does not unfold below 60 degrees C. The domain-swapping is not directly responsible for the affinity loss, but is likely a side-effect of the structural instability which may contribute to affinity loss. A second round of design was successful in eliminating the dimerization through mutation of a residue (Leu51Ser) at the joint of the domain-swapped loop.


Journal of Cerebral Blood Flow and Metabolism | 2017

Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier:

Arsalan S. Haqqani; Christie Delaney; Eric Brunette; Ewa Baumann; Graham K. Farrington; William P. Sisk; John K. Eldredge; Wen Ding; Tammy-Lynn Tremblay; Danica B. Stanimirovic

Current methods for examining antibody trafficking are either non-quantitative such as immunocytochemistry or require antibody labeling with tracers. We have developed a multiplexed quantitative method for antibody ‘tracking’ in endosomal compartments of brain endothelial cells. Rat brain endothelial cells were co-incubated with blood-brain barrier (BBB)-crossing FC5, monovalent FC5Fc or bivalent FC5Fc fusion antibodies and control antibodies. Endosomes were separated using sucrose-density gradient ultracentrifugation and analyzed using multiplexed mass spectrometry to simultaneously quantify endosomal markers, receptor-mediated transcytosis (RMT) receptors and the co-incubated antibodies in each fraction. The quantitation showed that markers of early endosomes were enriched in high-density fractions (HDF), whereas markers of late endosomes and lysosomes were enriched in low-density fractions (LDF). RMT receptors, including transferrin receptor, showed a profile similar to that of early endosome markers. The in vitro BBB transcytosis rates of antibodies were directly proportional to their partition into early endosome fractions of brain endothelial cells. Addition of the Fc domain resulted in facilitated antibody ‘redistribution’ from LDF into HDF and additionally into multivesicular bodies (MVB). Sorting of various FC5 antibody formats away from late endosomes and lysosomes and into early endosomes and a subset of MVB results in increased antibody transcytosis at the abluminal side of the BBB.


Journal of Structural Biology | 2014

Influence of canonical structure determining residues on antibody affinity and stability.

Louis A. Clark; Stephen J. Demarest; John K. Eldredge; Matthew Jarpe; You Li; Ken Simon; Herman W. T. van Vlijmen

A number of light and heavy chain canonical residue core redesigns were made in a therapeutic antibody (AQC2, anti-VLA1) Fab to explore the consequences to binding affinity and stability. These positions are all loop supporting, primarily CDR1 residues which do not directly contact the antigen. Structure based methods were used with and without consensus sequence information. 30 constructs were made, 24 expressed, and 70% of the designs using consensus sequence information retained binding affinity. Some success maintaining stability with more extreme redesigns suggests a surprising tolerance to mutation, though it often comes at the cost of loss of binding affinity and presumed loop conformation changes. In concordance with the expected need to present an ordered surface for binding, a relationship between decreased affinity and decreased stability was observed. Overpacking the core tends to destabilize the molecule and should be avoided.


Archive | 2004

NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO

Graham K. Farrington; Alexey Lugovskoy; Werner Meier; John K. Eldredge; Ellen Garber


Biochemistry | 2006

Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B cell activating factor).

Teresa G. Cachero; Ian M. Schwartz; Fang Qian; Eric S. Day; Claudia Bossen; Karine Ingold; Aubry Tardivel; Dennis Krushinskie; John K. Eldredge; Laura Silvian; Alexey A. Lugovskoy; Graham K. Farrington; Kathy Strauch; Pascal Schneider; Adrian Whitty


Biochemistry | 2006

Stoichiometry of LTβR binding to LIGHT

John K. Eldredge; Steven A. Berkowitz; Alan F. Corin; Eric S. Day; David Hayes; Werner Meier; Kathy Strauch; Mohammad Zafari; Madhavi Tadi; Graham K. Farrington

Collaboration


Dive into the John K. Eldredge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Garber

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Garber

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge