Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John K. Orak is active.

Publication


Featured researches published by John K. Orak.


Molecular and Cellular Biochemistry | 2000

Kidney ischemia-reperfusion: Modulation of antioxidant defenses

Kazushige Dobashi; Bidyut Ghosh; John K. Orak; Inderjit Singh; Avtar K. Singh

Reactive oxygen species (ROS; O2-, H2O2, and OH·), normal by-products of cellular metabolic processes, are kept in control by antioxidant enzymes, such as catalase, glutathione peroxidase (GPX) and superoxide dismutases (SODs). To understand the role of antioxidant enzymatic defenses against ROS injury following ischemia-reperfusion, we examined the effect on kidney exposed to varying periods (30, 60 or 90 min) of ischemia followed by different periods of reperfusion. The enzymatic activities and protein levels of catalase, GPX, CuZnSOD and MnSOD were relatively unaffected at 30 min of ischemia followed by 0, 2 or 24 h reperfusion. However, 60 or 90 min of ischemia followed by 0, 2 or 24 h of reperfusion resulted in a decrease in activities and protein levels which paralleled the duration of ischemic injury. MnSOD activity tended to recover towards normal during reperfusion. Examination of the mRNA levels of these antioxidant enzymes demonstrated a severe decrease in mRNA levels of catalase and GPX at a time point of minimal ischemic injury (30 min of ischemia followed by reperfusion) suggesting that loss of mRNA of catalase and GPX may be the first markers of alterations in cellular redox in ischemia-reperfusion injury. Greater loss of mRNA for catalase, GPX and CuZnSOD were observed following longer periods (60 or 90 min) of ischemia. The mRNA for MnSOD was upregulated at all time points of ischemia-reperfusion injury. Actually, the greater decrease in mRNAs for catalase, GPX and CuZnSOD in the acute phase (within 24 h) subsequently showed a further decrease in these enzyme activities in the subacute phase (72 or 120 h after ischemia). These enzyme activities in the 30 min ischemia group, but not in the 90 min group, already showed tendencies for normalization at 120 h after ischemia. To understand the molecular basis of the loss of mRNA of these antioxidant enzymes during ischemia-reperfusion injury, we examined the rate of transcription by nuclear run-on assays. The similar rates of transcription in control and kidney exposed to ischemia-reperfusion indicates that the loss of mRNA for catalase, GPX and CuZnSOD are possibly due to the increased rate of turnover of their mRNAs. These studies suggest that expression of antioxidant genes during ischemia-reperfusion are not coordinately expressed and the differential loss of antioxidant enzymes may be the contributing factor(s) towards the heterogeneous renal tissue damage as a result of ischemia-reperfusion induced oxidative stress.


The Journal of Pediatrics | 2010

Increasing Incidence of Kidney Stones in Children Evaluated in the Emergency Department

David J. Sas; Thomas C. Hulsey; Ibrahim F. Shatat; John K. Orak

OBJECTIVE To test the hypothesis that there is an increase in the incidence of childhood nephrolithiasis in the state of South Carolina. STUDY DESIGN We analyzed demographic data from a statewide database on incidence of kidney stones from emergency department data and financial charges. Data were compared with population data from the US Census to control for population growth. RESULTS There was a significant increase in the incidence of kidney stones in children between 1996 and 2007. The greatest rate of increase was seen in adolescents, pre-adolescents, and Caucasian children. Infants, toddlers, and African-American children did not show significantly increased incidence in the period. Girls show a growing predominance in our population. The amount of money charged for care of children with kidney stones has gone up >4-fold in our state. CONCLUSION The incidence of kidney stone disease has risen dramatically in the state of South Carolina since 1996. Further studies investigating potential contributing factors are needed to prevent this costly and painful condition.


Molecular and Cellular Biochemistry | 1993

Expression of antioxidant enzymes in rat kidney during ischemia-reperfusion injury.

Inderjit Singh; Sukhvarsha Gulati; John K. Orak; Avtar K. Singh

The effect of ischemia-reperfusion on activity, protein and m-RNA levels of catalase, copper-zinc and manganese containing superoxide dismutases and glutathione peroxidase, the enzymes that are involved in free radical detoxification was studied in rat kidney. Ischemia alone did not alter either the activities or protein levels of superoxide dismutase and glutathione peroxidase. However, catalase activity was found to be inhibited to 82% of control. The inhibition of catalase was due to the inactivation of the enzyme as there was no significant change in enzyme protein level. Reperfusion following ischemia, however, led to a significant decrease in both the activities as well as the protein levels of all the antioxidant enzymes. The observed overall decrease in total superoxide dismutase activity was the net effect of a decrease in copper-zinc superoxide dismutase while manganese superoxide dismutase activity was found to be increased following reperfusion. This observed increased manganese superoxide dismutase activity was the result of its increased protein level. The mRNA levels for catalase, superoxide dismutases, and glutathione peroxidase were observed to be increased (100–145% of controls) following ischemia; reperfusion of ischemic kidneys, however, resulted in a significant decrease in the levels of mRNAs coding for all the enzymes except manganese superoxide dismutase which remained high. These results suggest that in tissue, the down regulation of the antioxidant enzyme system could be responsible for the pathophysiology of ischemia-reperfusion injury.


Archives of Biochemistry and Biophysics | 1992

Ischemia-reperfusion injury: Biochemical alterations in peroxisomes of rat kidney

Sukhvarsha Gulati; Avtar K. Singh; Carlos Irazu; John K. Orak; Prathivadibhayankaram R. Rajagopalan; Charles T. Fitts; Inderjit Singh

Exogenously supplied catalase, a peroxisomal enzyme, has been found to be of therapeutic value in ischemic injury. Therefore, we examined the effect of ischemic-reperfusion injury on the structure and function of kidney peroxisomes. Ischemic injury changed the density of peroxisomes from 1.21 g/cm3 (peak I) to a lighter density of 1.14 g/cm3 (peak II). The number of peroxisomes moving from the normal density population (peak I) to a lower density population (peak II) increased with an increase in ischemic injury. Latency experiments indicated both populations of peroxisomes to be of intact peroxisomes. Immunoblot analysis with antibodies against peroxisomal matrix and membrane proteins demonstrated that after 90 min of ischemia a significant number of matrix proteins were lost in the peak II population, suggesting that functions of these peroxisomes may be severally affected. Reperfusion following ischemic injury resulted in loss of peroxisomal matrix proteins in both peaks I and II, suggesting that peroxisomal functions may be drastically compromised. This change in peroxisomal functions is reflected by a significant decrease in peroxisomal catalase activity (35%) and beta-oxidation of lignoceric acid (43%) observed following 90 min of ischemia. The decrease in catalase activity was more pronounced in reperfused kidneys even after a shorter term of ischemic injury. Reperfusion restored the normal peroxisomal beta-oxidation in kidneys exposed up to 60 min of ischemia. However, 90 min of ischemia was irreversible as there was a further decrease in beta-oxidation upon reperfusion. The decrease in catalase activity during ischemia alone was due to the formation of an inactive complex, whereas during reperfusion, following 90 min of ischemia, inactivation and proteolysis or decreased synthesis of catalase contributed equally toward the injury. The observed changes in the structure and function of peroxisomes as a result of ischemic-reperfusion injury and the ubiquitous distribution of peroxisomes underlines the importance of this organelle in the pathophysiology of vascular injury in general.


Biochimica et Biophysica Acta | 1993

Alterations of peroxisomal function in ischemia-reperfusion injury of rat kidney

Sukhvarsha Gulati; Lincoyan Ainol; John K. Orak; Avtar K. Singh; Inderjit Singh

We have previously demonstrated that ischemic injury results in the loss of peroxisomal functions (e.g., inhibition of catalase activity and fatty-acid beta-oxidation activity). To understand the molecular mechanism leading to the loss of peroxisomal beta-oxidation in ischemic tissue, we examined the levels of individual enzyme activities and proteins of the peroxisomal beta-oxidation system and overall fatty-acid oxidation in peroxisomes isolated from kidney exposed to ischemia-reperfusion injury. The peroxisomal beta-oxidation decreased with an increase in time of ischemic injury (53% and 43% of the control in kidneys exposed to 60 and 90 min ischemia, respectively). In vivo inactivation of catalase with aminotriazole and exposure of isolated peroxisomes to H2O2 resulted in inhibition of peroxisomal beta-oxidation system suggesting that this enzyme system is labile to excessive H2O2 produced during ischemic injury. The enzyme activities of lignoceroyl-CoA ligase, acyl-CoA oxidase, bifunctional enzymes and acyl-CoA thiolase (individual peroxisomal beta-oxidation enzymes) after 90 min of ischemia were 87, 80, 87 and 85% of the control, respectively. This decrease in enzyme activities was more pronounced following reperfusion (28, 11, 23 and 35% of the control, respectively). Immunoblot analysis of these enzymes indicated that the major loss of these enzyme activities during ischemia was due to their inactivation, whereas during reperfusion, proteolysis also contributed toward the observed loss of these activities. In summary, these results demonstrated that loss of peroxisomal beta-oxidation in ischemia-reperfusion injury was due to inactivation and proteolysis of beta-oxidation enzymes. Acyl-CoA oxidase was more sensitive to ischemia-reperfusion injury compared to other enzymes, and the overall loss of peroxisomal beta-oxidation may be a reflection of the loss of acyl-CoA oxidase activity, a rate-limiting enzyme.


Molecular and Cellular Biochemistry | 2002

Combination therapy of N-acetylcysteine, sodium nitroprusside and phosphoramidon attenuates ischemia-reperfusion injury in rat kidney.

Kazushige Dobashi; Inderjit Singh; John K. Orak; Kohtaro Asayama; Avtar K. Singh

Renal ischemia is of clinical interest because of its role in renal failure and also renal graft rejection. To evaluate the effect of the combination of N-acetylcysteine (NAC), a potent antioxidant, sodium nitroprusside (SNP), a nitric oxide donor, and phosphoramidon (P), an endothelin converting enzyme inhibitor, on tissue protection against ischemia-reperfusion injury, we studied the biochemical and morphological changes due to 90 min of renal ischemia-reperfusion in the rat model. Ninety min of ischemia caused very severe injury and the animals could not survive after 4 days without any treatment. Whereas, animals in the treated groups survived i.e. the NAC group (25%), NAC + SNP group (43%) and in the NAC + SNP + P group (100%), 2 weeks after 90 min of ischemia. A significant increase in the serum levels of creatinine and urea nitrogen was shown in the untreated group and to a much lesser extent in the treated group, especially in the NAC + SNP + P group. The protective effect was also supported by light microscopic studies on renal tissue sections. We also measured the activities of antioxidant enzymes in tissue homogenates. With the exception of Mn-superoxide dismutase, the activities of antioxidant enzymes (catalase, glutathione peroxidase, CuZn-superoxide dismutase) were decreased in the untreated kidney. The administration of NAC alone and NAC + SNP protected against the loss of activities. Treatment with a combination of NAC, SNP and P showed a synergistic effect as evidenced by the best protection. These results suggest that pre-administration of a combination of antioxidant (NAC) with endothelin derived vasodilators (sodium nitroprusside and Phosphoramidon) attenuates renal ischemia-reperfusion injury, e.g. in donor kidney for transplantation, by protecting cells against free radical damage.


Molecular and Cellular Biochemistry | 1997

STUDIES ON HEPATIC INJURY AND ANTIOXIDANT ENZYME ACTIVITIES IN RAT SUBCELLULAR ORGANELLES FOLLOWING IN VIVO ISCHEMIA AND REPERFUSION

Mahesh P. Gupta; Kazushige Dobashi; Eddie L. Greene; John K. Orak; Inderjit Singh

The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.


Molecular and Cellular Biochemistry | 2002

Attenuation of ischemia/reperfusion induced MAP kinases by N-acetyl cysteine, sodium nitroprusside and phosphoramidon

A. Mehta; Charanpal Sekhon; Shailendra Giri; John K. Orak; Avtar K. Singh

Ischemia followed by reperfusion has a number of clinically significant consequences. A number of pathophysiological processes appear to be involved in ischemia/reperfusion (I/R) injury. The mitogen activated protein kinases (MAPK) are integral components of the parallel MAP kinase cascades activated in response to a variety of cellular stress inducing ischemia/ATP depletion and inflammatory cytokines. Many studies suggest that members of the MAP kinase family in particular Jun N-terminal kinase (JNK) are activated in kidney following ischemia/reperfusion of this tissue. The present study underlines the therapeutic potential of the combination of N-acetyl cysteine (NAC), a potent antioxidant, sodium nitroprusside (SNP), a nitric oxide donor and phosphoramidon (P), an endothelin-1 converting enzyme inhibitor in ameliorating the MAPK induced damage during renal ischemia/reperfusion injury. Our previous results showed that 90 min of ischemia followed by reperfusion caused very severe injury and that the untreated animals had 100% mortality after the 3rd day whereas there was improved renal function and 100% survival of animals in the three drug combination treatment group. The present study, mainly on tissue sections, further supports the protection provided by the triple drug therapy. A higher degree of expression of all the three classes of MAPK, i.e. JNK, P38 MAP kinases and P-extracellular signal regulated kinases (ERKs) can be seen in kidneys subjected to ischemia/reperfusion insult. Pretreatment with a combination of N-acetyl cysteine, sodium nitroprusside, and phosphoramidon completely inhibits all three classes of MAPK and ameliorates AP-1 whereas individual or a combination of any two drugs is not as effective.


Glia | 2010

Activation of PPAR-γ and PTEN cascade participates in lovastatin-mediated accelerated differentiation of oligodendrocyte progenitor cells.

Ajaib S. Paintlia; Manjeet K. Paintlia; Avtar K. Singh; John K. Orak; Inderjit Singh

Previously, we and others documented that statins including‐lovastatin (LOV) promote the differentiation of oligodendrocyte progenitor cells (OPCs) and remyelination in experimental autoimmune encephalomyelitis (EAE), an multiple sclerosis (MS) model. Conversely, some recent studies demonstrated that statins negatively influence oligodendrocyte (OL) differentiation in vitro and remyelination in a cuprizone‐CNS demyelinating model. Therefore, herein, we first investigated the cause of impaired differentiation of OLs by statins in vitro settings. Our observations indicated that the depletion of cholesterol was detrimental to LOV treated OPCs under cholesterol/serum‐deprived culture conditions similar to that were used in conflicting studies. However, the depletion of geranylgeranyl‐pp under normal cholesterol homeostasis conditions enhanced the phenotypic commitment and differentiation of LOV‐treated OPCs ascribed to inhibition of RhoA‐Rho kinase. Interestingly, this effect of LOV was associated with increased activation and expression of both PPAR‐γ and PTEN in OPCs as confirmed by various pharmacological and molecular based approaches. Furthermore, PTEN was involved in an inhibition of OPCs proliferation via PI3K‐Akt inhibition and induction of cell cycle arrest at G1 phase, but without affecting their cell survival. These effects of LOV on OPCs in vitro were absent in the CNS of normal rats chronically treated with LOV concentrations used in EAE indicating that PPAR‐γ induction in normal brain may be tightly regulated‐providing evidences that statins are therapeutically safe for humans. Collectively, these data provide initial evidence that statin‐mediated activation of the PPAR‐γ‐PTEN cascade participates in OL differentiation, thus suggesting new therapeutic‐interventions for MS or related CNS‐demyelinating diseases.


Lipids | 1988

Fatty acid metabolism in renal ischemia

E. Ruidera; C. E. Irazu; P. R. Rajagopalan; John K. Orak; Charles T. Fitts; Inderjit Singh

The increase in free fatty acids in the ischemic tissue is a consistent observation and these free fatty acids are considered, to play a role in the cellular toxicity. To elucidate the cause of higher levels of free fatty acids in ischemic tissue, we examined the catabolism of fatty acids. The β-oxidation of lignoceric (24∶0), palmitic (16∶0) and octanoic (8∶0) acids and the peroxidation of fatty acids were measured at different times of renal ischemia in whole kidney homogenate. The enzymatic activities for the oxidation of fatty acids decreased with the increase in ischemia time. However, the lipid peroxide levels increased 2.5-fold of control with ischemic injury. Sixty min of ischemia reduced the rate of oxidation of octanoic, palmitic and lignoceric acids by 57, 59 and 69%, respectively. Almost similar loss of fatty acid oxidation activity was observed in the peroxisomes and mitochondria. These data suggest that loss of mitochondrial and peroxisomal fatty acid β-oxidation enzyme activities from ischemic injury may be one of the factors responsible for the higher levels of free fatty acids.

Collaboration


Dive into the John K. Orak's collaboration.

Top Co-Authors

Avatar

Inderjit Singh

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Avtar K. Singh

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kazushige Dobashi

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Gursev S. Dhaunsi

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Sukhvarsha Gulati

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Bidyut Ghosh

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Charanpal Sekhon

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Karen L. Hiott

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mushfiquddin Khan

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge