Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Klaessens is active.

Publication


Featured researches published by John Klaessens.


Proceedings of SPIE | 2013

Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies

John Klaessens; Martin Nelisse; Rudolf M. Verdaasdonk; Herke Jan Noordmans

During clinical interventions objective and quantitative information of the tissue perfusion, oxygenation or temperature can be useful for the surgical strategy. Local (point) measurements give limited information and affected areas can easily be missed, therefore imaging large areas is required. In this study a LED based multispectral imaging system (MSI, 17 different wavelengths 370nm-880nm) and a thermo camera were applied during clinical interventions: tissue flap transplantations (ENT), local anesthetic block and during open brain surgery (epileptic seizure). The images covered an area of 20x20 cm, when doing measurements in an (operating) room, they turned out to be more complicated than laboratory experiments due to light fluctuations, movement of the patient and limited angle of view. By constantly measuring the background light and the use of a white reference, light fluctuations and movement were corrected. Oxygenation concentration images could be calculated and combined with the thermal images. The effectively of local anesthesia of a hand could be predicted in an early stage using the thermal camera and the reperfusion of transplanted skin flap could be imaged. During brain surgery, a temporary hyper-perfused area was witnessed which was probably related to an epileptic attack. A LED based multispectral imaging system combined with thermal imaging provide complementary information on perfusion and oxygenation changes and are promising techniques for real-time diagnostics during clinical interventions.


Proceedings of SPIE | 2011

Hyperspectral imaging system for imaging O2Hb and HHb concentration changes in tissue for various clinical applications

John Klaessens; Rowland de Roode; Rudolf M. Verdaasdonk; Herke Jan Noordmans

To observe local variations in temperature, oxygenation and blood perfusion over time, four imaging systems were developed and compared: Two systems consisting of white broadband light source and a CCD camera in combination with a Liquid Crystal Tunable Filter, one in the visual domain, 420-730 nm, and one in the infrared domain, 650-1100 nm. Thirdly, a CCD camera in combination with a software controlled hyper-spectral light source consisting of a panel with 600 LEDs divided in 17 spectral groups in the range from 370 to 880 nm so that specific spectral distributions can be generated at high repetition rate (>1000 Hz) and, fourthly a standard IR thermal camera for comparison. From the acquired images at the selected wavelengths chromophores concentration images of oxy and deoxy hemoglobin can be calculated applying different algorithms. These imaging techniques were applied and compared for various clinical applications: Tumor demarcation, early inflammation, effectiveness of peripheral nerve block anesthesia, and localization of epileptic seizure. The relative changes in oxygenation and temperature could be clearly observed in good correlation with the physiological condition. The algorithms and data collection/processing can be optimized to enable a real-time diagnostic technique.


Optical Tomography and Spectroscopy of Tissue VIII | 2009

Non-invasive skin oxygenation imaging using a multi-spectral camera system: effectiveness of various concentration algorithms applied on human skin

John Klaessens; Herke Jan Noordmans; Rowland de Roode; Rudolf M. Verdaasdonk

This study describes noninvasive noncontact methods to acquire and analyze functional information from the skin. Multispectral images at several selected wavelengths in the visible and near infrared region are collected and used in mathematical methods to calculate concentrations of different chromophores in the epidermis and dermis of the skin. This is based on the continuous wave Near Infrared Spectroscopy method, which is a well known non-invasive technique for measuring oxygenation changes in the brain and in muscle tissue. Concentration changes of hemoglobin (dO2Hb, dHHb and dtHb) can be calculated from light attenuations using the modified Lambert Beer equation. We applied this technique on multi-spectral images taken from the skin surface using different algorithms for calculating changes in O2Hb, HHb and tHb. In clinical settings, the imaging of local oxygenation variations and/or blood perfusion in the skin can be useful for e.g. detection of skin cancer, detection of early inflammation, checking the level of peripheral nerve block anesthesia, study of wound healing and tissue viability by skin flap transplantations. Images from the skin are obtained with a multi-spectral imaging system consisting of a 12-bit CCD camera in combination with a Liquid Crystal Tunable Filter. The skin is illuminated with either a broad band light source or a tunable multi wavelength LED light source. A polarization filter is used to block the direct reflected light. The collected multi-spectral imaging data are images of the skin surface radiance; each pixel contains either the full spectrum (420 - 730 nm) or a set of selected wavelengths. These images were converted to reflectance spectra. The algorithms were validated during skin oxygen saturation changes induced by temporary arm clamping and applied to some clinical examples. The initial results with the multi-spectral skin imaging system show good results for detecting dynamic changes in oxygen concentration. However, the optimal algorithm needs to be determined. Multi-spectral skin imaging shows to be a promising technique for various clinical applications were the local distribution of oxygenation is of major importance.


Proceedings of SPIE | 2007

Dynamic change of characteristics of (modified) fiber tips used with microsecond pulsed lasers in a liquid environment influencing the effectiveness and safety of treatment

Rudolf M. Verdaasdonk; John Klaessens; Rowland de Roode; Tjeerd de Boorder; Jan Blanken

Microsecond pulsed laser systems, like the Thulium, Holmium and Erbium laser are being used for a broad range of medical applications in a liquid environment. Usually, the tissue ablation mechanism of these lasers is based on the instant formation of water vapor. When used with fiber delivery systems, the refraction of the beam coming out of the fiber will change the moment the liquid boundary turns to vapor. This dynamic change can be used in a controlled way but can also have adverse effects if not appreciated. In this study, the effect of the vapor phase change was investigated for various fiber shapes regarding optical and mechanical properties using high speed imaging and ray-trace simulation. Fiber tips of various shapes (bare, angled, tapered, ball shaped) were imaged with high-resolution using 1 &mgr;s light flashes in a video sequence of delay times from 1 to 2000 &mgr;s during exposure with pulsed 2.1 &mgr;m Holmium and pulsed 2.9 &mgr;m Erbium laser pulses. The tip was position in water or near a tissue surface. The dynamics of the explosive vapor bubble changed due to angle of refraction at the silica/vapor interface depending of the shape of the fiber tip. Ball shaped fibers form focused and highly divergent beams, angled fibers become side firing and tapered tips more concentrated. The observations are supported by ray-trace simulation. Clinically this mechanism can be used e.g. to create tiny side firing fibers in root channels of teeth. However, a damaged fiber tip may become unexpectedly side-firing resulting in adverse effects e.g. during lithotripsy. Ball-shaped fibers may be more resistant for damage due to impact with tissue. Using microsecond pulsed laser systems, the change in optical action of the fiber tip in liquid can influence the effectiveness and safety of the procedure.


Proceedings of SPIE | 2013

Multimodal tissue perfusion imaging using multi-spectral and thermographic imaging systems applied on clinical data

John Klaessens; Martin Nelisse; Rudolf M. Verdaasdonk; Herke Jan Noordmans

Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.


Epilepsia | 2013

Imaging the seizure during surgery with a hyperspectral camera.

Herke Jan Noordmans; Cyrille H. Ferrier; Rowland de Roode; Frans S. S. Leijten; Peter C. van Rijen; Peter H. Gosselaar; John Klaessens; R. M. Verdaasdonk

An epilepsy patient with recurring sensorimotor seizures involving the left hand every 10 min, was imaged with a hyperspectral camera during surgery. By calculating the changes in oxygenated, deoxygenated blood, and total blood volume in the cortex, a focal increase in oxygenated and total blood volume could be observed in the sensory cortex, corresponding to the seizure‐onset zone defined by intracranial electroencephalography (EEG) findings. This probably reflects very local seizure activity. After multiple subpial transections in this motor area, clinical seizures abated.


Proceedings of SPIE | 2011

Objective methods for achieving an early prediction of the effectiveness of regional block anesthesia using thermography and hyper-spectral imaging

John Klaessens; Mattijs Landman; Rowland de Roode; Herke Jan Noordmans; Rudolf M. Verdaasdonk

An objective method to measure the effectiveness of regional anesthesia can reduce time and unintended pain inflicted to the patient. A prospective observational study was performed on 22 patients during a local anesthesia before undergoing hand surgery. Two non-invasive techniques thermal and oxygenation imaging were applied to observe the region affected by the peripheral block and the results were compared to the standard cold sensation test. The supraclavicular block was placed under ultrasound guidance around the brachial plexus by injecting 20 cc Ropivacaine. The sedation causes a relaxation of the muscles around the blood vessels resulting in dilatation and hence an increase of blood perfusion, skin temperature and skin oxygenation in the lower arm and hand. Temperatures were acquired with an IR thermal camera (FLIR ThermoCam SC640). The data were recorded and analyzed with the ThermaCamTMResearcher and Matlab software. Narrow band spectral images were acquired at selected wavelengths with a CCD camera either combined with a Liquid Crystal Tunable Filter (420-730 nm) or a tunable hyper-wavelength LED light source (450-880nm). Concentration changes of oxygenated and deoxygenated hemoglobin in the dermis of the skin were calculated using the modified Lambert Beer equation. Both imaging methods showed distinct oxygenation and temperature differences at the surface of the skin of the hand with a good correlation to the anesthetized areas. A temperature response was visible within 5 minutes compared to the standard of 30 minutes. Both non-contact methods show to be more objective and can have an earlier prediction for the effectiveness of the anesthetic block.


Proceedings of SPIE | 2007

The visualization of surgical smoke produced by energy delivery devices: significance and effectiveness of evacuation systems

Tjeerd de Boorder; Rudolf M. Verdaasdonk; John Klaessens

Devices delivering energy to biological tissues (eg lasers, RF and ultrasound) can induce surgical smoke consisting of particles, vapor, gasses and aerosols. Besides interfering with the view of the surgeon, the smoke is a risk for the health of both the users and patients. In literature, it has been shown that surgical smoke can contain carcinogenic and harmful biological agents. However, the impact on health of the users and patients is widely debated. The use of smoke evacuation systems in the OR is usually governed by economical reason instead of safety issues. A special image enhancement technique is used to study the behavior of smoke and aerosols and the effectiveness of smoke evacuation systems. A back scatter illumination technique using 1 &mgr;s light flashes at video rate was applied to image the smoke production of various surgical devices without and with smoke evacuation while ablating biological tissues. The effectiveness of various smoke evacuation devices and strategies were compared. The ablative thermal devices produced smoke but also aerosols. If the thermal energy was delivered in high peak pulses, the presence of aerosols was more significant. Ultrasound based devices produce mainly aerosols. The distance to the target, the opening of the evacuation nozzle and the dimension of aerosols were leading for the effectiveness of the smoke evacuation. The smoke visualization technique has proven an effective tool for study the effectiveness of smoke and aerosols evacuation. The results can contribute to the necessity to use evacuation systems in the OR.


Proceedings of SPIE | 2008

A modified algorithm for continuous wave Near Infrared Spectroscopy applied to in-vivo animal experiments and on human skin

John Klaessens; J.C.W. Hopman; K. Djien Liem; Rowland de Roode; Rudolf M. Verdaasdonk; J.M. Thijssen

Continuous wave Near Infrared Spectroscopy is a well known non invasive technique for measuring changes in tissue oxygenation. Absorption changes (&Dgr;O2Hb and &Dgr;HHb) are calculated from the light attenuations using the modified Lambert Beer equation. Generally, the concentration changes are calculated relative to the concentration at a starting point in time (delta time method). It is also possible, under certain assumptions, to calculate the concentrations by subtracting the equations at different wavelengths (delta wavelength method). We derived a new algorithm and will show the possibilities and limitations. In the delta wavelength method, the assumption is that the oxygen independent attenuation term will be eliminated from the formula even if its value changes in time, we verified the results with the classical delta time method using extinction coefficients from different literature sources for the wavelengths 767nm, 850nm and 905nm. The different methods of calculating concentration changes were applied to the data collected from animal experiments. The animals (lambs) were in a stable normoxic condition; stepwise they were made hypoxic and thereafter they returned to normoxic condition. The two algorithms were also applied for measuring two dimensional blood oxygen saturation changes in human skin tissue. The different oxygen saturation levels were induced by alterations in the respiration and by temporary arm clamping. The new delta wavelength method yielded in a steady state measurement the same changes in oxy and deoxy hemoglobin as the classical delta time method. The advantage of the new method is the independence of eventual variation of the oxygen independent attenuations in time.


Bios | 2010

Thermographic and oxygenation imaging system for non-contact skin measurements to determine the effects of regional block anesthesia

John Klaessens; Mattijs Landman; Rowland de Roode; Herke Jan Noordmans; Rudolf M. Verdaasdonk

Regional anesthetic blocks are performed on patients who will undergo surgery of the hand. In this study, thermal and oxygenation imaging techniques were applied to observe the region affected by the peripheral block as a fast objective, non-contact, method compared to the standard pinpricks or cold sensation tests. The temperature images were acquired with an IR thermal camera (FLIR ThermoCam SC640). The data were recorded and analyzed with the ThermaCamTM Researcher software. Images at selected wavelengths were obtained with a CCD camera combined with a Liquid Crystal Tunable Filter (420-730 nm). The concentration changes of oxygenated and deoxygenated hemoglobin in the dermis of the skin were calculated using the modified Lambert Beer equation. In 10 patients an anesthetic block was placed by administering 20-30 ml Ropivacaine 7,5 mg/ml around the plexus brachialis. The anesthetic block of the axillary, ulnar, median and radial nerve causes dilatation of the blood vessels inducing an increase of blood flow and, consequently, an increase of the skin temperature and skin oxygenation in the lower arm. Both imaging methods showed distinct oxygenation and temperature differences at the surface of the skin of the hand with a good correlation with the areas with the nerve blocks. For oxygenation imaging a CCD camera with LED light source of selected wavelengths might be a relative inexpensive method to observe the effectiveness of regional blocks.

Collaboration


Dive into the John Klaessens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Blanken

Academic Center for Dentistry Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Alex Rem

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cees W. M. van der Geld

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christa Boer

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge