John Kochalka
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Kochalka.
Cerebral Cortex | 2016
Weidong Cai; Tianwen Chen; Srikanth Ryali; John Kochalka; Chiang-shan R. Li; Vinod Menon
Cognitive control plays an important role in goal-directed behavior, but dynamic brain mechanisms underlying it are poorly understood. Here, using multisite fMRI data from over 100 participants, we investigate causal interactions in three cognitive control tasks within a core Frontal-Cingulate-Parietal network. We found significant causal influences from anterior insula (AI) to dorsal anterior cingulate cortex (dACC) in all three tasks. The AI exhibited greater net causal outflow than any other node in the network. Importantly, a similar pattern of causal interactions was uncovered by two different computational methods for causal analysis. Furthermore, the strength of causal interaction from AI to dACC was greater on high, compared with low, cognitive control trials and was significantly correlated with individual differences in cognitive control abilities. These results emphasize the importance of the AI in cognitive control and highlight its role as a causal hub in the Frontal-Cingulate-Parietal network. Our results further suggest that causal signaling between the AI and dACC plays a fundamental role in implementing cognitive control and are consistent with a two-stage cognitive control model in which the AI first detects events requiring greater access to cognitive control resources and then signals the dACC to execute load-specific cognitive control processes.
The Journal of Neuroscience | 2015
Tanya M. Evans; John Kochalka; Tricia J. Ngoon; Sarah S. Wu; X Shaozheng Qin; X Christian Battista; Vinod Menon
Early numerical proficiency lays the foundation for acquiring quantitative skills essential in todays technological society. Identification of cognitive and brain markers associated with long-term growth of childrens basic numerical computation abilities is therefore of utmost importance. Previous attempts to relate brain structure and function to numerical competency have focused on behavioral measures from a single time point. Thus, little is known about the brain predictors of individual differences in growth trajectories of numerical abilities. Using a longitudinal design, with multimodal imaging and machine-learning algorithms, we investigated whether brain structure and intrinsic connectivity in early childhood are predictive of 6 year outcomes in numerical abilities spanning childhood and adolescence. Gray matter volume at age 8 in distributed brain regions, including the ventrotemporal occipital cortex (VTOC), the posterior parietal cortex, and the prefrontal cortex, predicted longitudinal gains in numerical, but not reading, abilities. Remarkably, intrinsic connectivity analysis revealed that the strength of functional coupling among these regions also predicted gains in numerical abilities, providing novel evidence for a network of brain regions that works in concert to promote numerical skill acquisition. VTOC connectivity with posterior parietal, anterior temporal, and dorsolateral prefrontal cortices emerged as the most extensive network predicting individual gains in numerical abilities. Crucially, behavioral measures of mathematics, IQ, working memory, and reading did not predict childrens gains in numerical abilities. Our study identifies, for the first time, functional circuits in the human brain that scaffold the development of numerical skills, and highlights potential biomarkers for identifying children at risk for learning difficulties. SIGNIFICANCE STATEMENT Children show substantial individual differences in math abilities and ease of math learning. Early numerical abilities provide the foundation for future academic and professional success in an increasingly technological society. Understanding the early identification of poor math skills has therefore taken on great significance. This work provides important new insights into brain structure and connectivity measures that can predict longitudinal growth of childrens math skills over a 6 year period, and may eventually aid in the early identification of children who might benefit from targeted interventions.
European Journal of Neuroscience | 2015
Tianwen Chen; Lars Michels; Kaustubh Supekar; John Kochalka; Srikanth Ryali; Vinod Menon
Coordinated attention to information from multiple senses is fundamental to our ability to respond to salient environmental events, yet little is known about brain network mechanisms that guide integration of information from multiple senses. Here we investigate dynamic causal mechanisms underlying multisensory auditory–visual attention, focusing on a network of right‐hemisphere frontal–cingulate–parietal regions implicated in a wide range of tasks involving attention and cognitive control. Participants performed three ‘oddball’ attention tasks involving auditory, visual and multisensory auditory–visual stimuli during fMRI scanning. We found that the right anterior insula (rAI) demonstrated the most significant causal influences on all other frontal–cingulate–parietal regions, serving as a major causal control hub during multisensory attention. Crucially, we then tested two competing models of the role of the rAI in multisensory attention: an ‘integrated’ signaling model in which the rAI generates a common multisensory control signal associated with simultaneous attention to auditory and visual oddball stimuli versus a ‘segregated’ signaling model in which the rAI generates two segregated and independent signals in each sensory modality. We found strong support for the integrated, rather than the segregated, signaling model. Furthermore, the strength of the integrated control signal from the rAI was most pronounced on the dorsal anterior cingulate and posterior parietal cortices, two key nodes of saliency and central executive networks respectively. These results were preserved with the addition of a superior temporal sulcus region involved in multisensory processing. Our study provides new insights into the dynamic causal mechanisms by which the AI facilitates multisensory attention.
Developmental Science | 2016
Dietsje Jolles; Sarit Ashkenazi; John Kochalka; Tanya M. Evans; Jennifer Richardson; Miriam Rosenberg-Lee; Hui Zhao; Kaustubh Supekar; Tianwen Chen; Vinod Menon
Mathematical disabilities (MD) have a negative life-long impact on professional success, employment, and health outcomes. Yet little is known about the intrinsic functional brain organization that contributes to poor math skills in affected children. It is now increasingly recognized that math cognition requires coordinated interaction within a large-scale fronto-parietal network anchored in the intraparietal sulcus (IPS). Here we characterize intrinsic functional connectivity within this IPS-network in children with MD, relative to a group of typically developing (TD) children who were matched on age, gender, IQ, working memory, and reading abilities. Compared to TD children, children with MD showed hyper-connectivity of the IPS with a bilateral fronto-parietal network. Importantly, aberrant IPS connectivity patterns accurately discriminated children with MD and TD children, highlighting the possibility for using IPS connectivity as a brain-based biomarker of MD. To further investigate regional abnormalities contributing to network-level deficits in children with MD, we performed whole-brain analyses of intrinsic low-frequency fluctuations. Notably, children with MD showed higher low-frequency fluctuations in multiple fronto-parietal areas that overlapped with brain regions that exhibited hyper-connectivity with the IPS. Taken together, our findings suggest that MD in children is characterized by robust network-level aberrations, and is not an isolated dysfunction of the IPS. We hypothesize that intrinsic hyper-connectivity and enhanced low-frequency fluctuations may limit flexible resource allocation, and contribute to aberrant recruitment of task-related brain regions during numerical problem solving in children with MD.
PLOS Computational Biology | 2016
Srikanth Ryali; Kaustubh Supekar; Tianwen Chen; John Kochalka; Weidong Cai; Jonathan Nicholas; Aarthi Padmanabhan; Vinod Menon; Daniele Marinazzo
Little is currently known about dynamic brain networks involved in high-level cognition and their ontological basis. Here we develop a novel Variational Bayesian Hidden Markov Model (VB-HMM) to investigate dynamic temporal properties of interactions between salience (SN), default mode (DMN), and central executive (CEN) networks—three brain systems that play a critical role in human cognition. In contrast to conventional models, VB-HMM revealed multiple short-lived states characterized by rapid switching and transient connectivity between SN, CEN, and DMN. Furthermore, the three “static” networks occurred in a segregated state only intermittently. Findings were replicated in two adult cohorts from the Human Connectome Project. VB-HMM further revealed immature dynamic interactions between SN, CEN, and DMN in children, characterized by higher mean lifetimes in individual states, reduced switching probability between states and less differentiated connectivity across states. Our computational techniques provide new insights into human brain network dynamics and its maturation with development.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Daniel A. Abrams; Tianwen Chen; Paola Odriozola; Katherine M. Cheng; Amanda E. Baker; Aarthi Padmanabhan; Srikanth Ryali; John Kochalka; Carl Feinstein; Vinod Menon
Significance The human voice provides a wealth of social information, including who is speaking. A salient voice in a child’s life is mothers voice, which guides social function during development. Here we identify brain circuits that are selectively engaged in children by their mother’s voice and show that this brain activity predicts social communication abilities. Nonsense words produced by mother activate multiple brain systems, including reward, emotion, and face-processing centers, reflecting how widely mother’s voice is broadcast throughout a child’s brain. Importantly, this activity provides a neural fingerprint of children’s social communication abilities. This approach provides a template for investigating social function in clinical disorders, e.g., autism, in which perception of biologically salient voices may be impaired. The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child’s life is mothers voice: Infants discriminate their mother’s voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother’s voice or whether this brain activity is related to children’s social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother’s voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother’s voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired.
NeuroImage | 2016
Srikanth Ryali; Yen-Yu Ian Shih; Tianwen Chen; John Kochalka; Daniel L. Albaugh; Zhongnan Fang; Kaustubh Supekar; Jin Hyung Lee; Vinod Menon
State-space multivariate dynamical systems (MDS) (Ryali et al. 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods are poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort, optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in fMRI. More generally, our study demonstrates that the combined use of optogenetics and fMRI provides a powerful new tool for evaluating computational methods designed to estimate causal interactions between distributed brain regions.
Journal of Neuroscience Methods | 2016
Srikanth Ryali; Tianwen Chen; Kaustubh Supekar; Tao Tu; John Kochalka; Weidong Cai; Vinod Menon
BACKGROUND Causal estimation methods are increasingly being used to investigate functional brain networks in fMRI, but there are continuing concerns about the validity of these methods. NEW METHOD Multivariate dynamical systems (MDS) is a state-space method for estimating dynamic causal interactions in fMRI data. Here we validate MDS using benchmark simulations as well as simulations from a more realistic stochastic neurophysiological model. Finally, we applied MDS to investigate dynamic casual interactions in a fronto-cingulate-parietal control network using human connectome project (HCP) data acquired during performance of a working memory task. Crucially, since the ground truth in experimental data is unknown, we conducted novel stability analysis to determine robust causal interactions within this network. RESULTS MDS accurately recovered dynamic causal interactions with an area under receiver operating characteristic (AUC) above 0.7 for benchmark datasets and AUC above 0.9 for datasets generated using the neurophysiological model. In experimental fMRI data, bootstrap procedures revealed a stable pattern of causal influences from the anterior insula to other nodes of the fronto-cingulate-parietal network. COMPARISON WITH EXISTING METHODS MDS is effective in estimating dynamic causal interactions in both the benchmark and neurophysiological model based datasets in terms of AUC, sensitivity and false positive rates. CONCLUSIONS Our findings demonstrate that MDS can accurately estimate causal interactions in fMRI data. Neurophysiological models and stability analysis provide a general framework for validating computational methods designed to estimate causal interactions in fMRI. The right anterior insula functions as a causal hub during working memory.
npj Science of Learning | 2018
Christian Battista; Tanya M. Evans; Tricia J. Ngoon; Tianwen Chen; Lang Chen; John Kochalka; Vinod Menon
Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children’s cognitive development and learning.Neuroscience: brain circuits rewire with children’s cognitive developmentChildren’s brains rewire as their cognitive skills improve. A team led by Vinod Menon at Stanford University acquired longitudinal (i.e., multiple time points in the same individuals) functional brain imaging data while children solved arithmetic problems. Their research demonstrates that with increased experience and proficiency across development, functional brain circuits becomes more specialized. Specifically, children’s brains showed a shift from fronto-parietal circuits associated with working memory to specialized dorsal-ventral visual stream circuits that facilitate direct integration of quantity manipulation and numerical symbol recognition. Children with better problem solving skills showed increased integration of information across hemispheres in parietal cortex. This research provides new insights into how cognitive development rewires the brain and leads to specialized circuits, and contributes foundational knowledge necessary for understanding learning disabilities.
Nature Communications | 2018
Jalil Taghia; Weidong Cai; Srikanth Ryali; John Kochalka; Jonathan Nicholas; Tianwen Chen; Vinod Menon
Human cognition is influenced not only by external task demands but also latent mental processes and brain states that change over time. Here, we use novel Bayesian switching dynamical systems algorithm to identify hidden brain states and determine that these states are only weakly aligned with external task conditions. We compute state transition probabilities and demonstrate how dynamic transitions between hidden states allow flexible reconfiguration of functional brain circuits. Crucially, we identify latent transient brain states and dynamic functional circuits that are optimal for cognition and show that failure to engage these states in a timely manner is associated with poorer task performance and weaker decision-making dynamics. We replicate findings in a large sample (N = 122) and reveal a robust link between cognition and flexible latent brain state dynamics. Our study demonstrates the power of switching dynamical systems models for investigating hidden dynamic brain states and functional interactions underlying human cognition.Brain activity is driven, in part, by external stimuli and demands, but internal brain states also change over time. Here, the authors use a novel Bayesian algorithm to track dynamic transitions between hidden neural states in human brain activity and to relate brain dynamics with behavior.