Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Kyndt is active.

Publication


Featured researches published by John Kyndt.


FEBS Letters | 2002

Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein

John Kyndt; Terrance E. Meyer; Michael A. Cusanovich; J. Van Beeumen

During genome sequence analysis of Rhodobacter capsulatus, nearby open reading frames were found that encode a photoactive yellow protein (PYP) and a hypothetical biosynthetic enzyme for its chromophore, a tyrosine ammonia lyase (TAL). We isolated the TAL gene, overproduced the recombinant protein in Escherichia coli, and after purification analyzed the enzyme for its activity. The catalytic efficiency for tyrosine was shown to be approximately 150 times larger than for phenylalanine, suggesting that the enzyme could in fact be involved in biosynthesis of the PYP chromophore. To our knowledge it is the first time this type of enzyme has been found in bacteria.


Photochemical and Photobiological Sciences | 2004

Photoactive yellow protein, bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteria.

John Kyndt; Terry E. Meyer; Michael A. Cusanovich

The purple photosynthetic bacteria contain a large variety of sensory and regulatory proteins, and those responding to light are among the most interesting. These currently include bacteriophytochrome (Bph), sensory rhodopsin (SR), and photoactive yellow protein (PYP), which all appear to function as light sensors. We herein interpret new findings within the context of current knowledge. For greater detail, the reader is referred to comprehensive reviews on these topics. Of the three proteins, only PYP has been well-characterized in terms of structure and physical-chemical properties in the purple bacteria, although none have well-defined functions. New findings include a cluster of six genes in the Thermochromatium tepidum genome that encodes presumed sensory rhodopsin and phototaxis proteins. T. tepidum also has a gene for PYP fused to bacteriophytochrome and diguanylate cyclase domains. The genes for PYP and its biosynthetic enzymes are associated with those for gas vesicle formation in Rhodobacter species, suggesting that one function of PYP is to regulate cell buoyancy. The association of bacteriophytochrome genes with those for reaction centers and light-harvesting proteins in Rhodopseudomonas palustris suggests that the photosynthetic antenna as well as the reaction center are regulated by Bphs. Furthermore, Rc. centenum PPR is reversibly photobleached at 702 nm rather than red-shifted as in other phytochromes, suggesting that PPR senses the intensity of white light rather than light quality. PYP from Halorhodospira(aka Ectothiorhodospira)halophila is of special interest because it has become the structural prototype for the PAS domain, a motif that is found throughout the phylogenetic tree and which plays important roles in many signaling pathways. Thus, the structural and photochemical characterization of PYP, utilizing site-directed mutagenesis, provides insights into the mechanism of signal transduction.


International Journal of Chemical Engineering | 2012

A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

Braden J. Crowe; Said Attalah; Shweta Agrawal; Peter Waller; Randy Ryan; Jonathan M. Van Wagenen; Aaron R. Chavis; John Kyndt; Murat Kacira; Kimberly L. Ogden; Michael H. Huesemann

The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8–20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to −9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L−1day−1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m−2day−1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.


World Journal of Microbiology & Biotechnology | 2015

Heterotrophic growth of microalgae: metabolic aspects

Daniela Morales-Sánchez; Oscar A. Martinez-Rodriguez; John Kyndt; Alfredo Martinez

Microalgae are considered photoautotrophic organisms, however several species have been found living in environments where autotrophic metabolism is not viable. Heterotrophic cultivation, i.e. cell growth and propagation with the use of an external carbon source under dark conditions, can be used to study the metabolic aspects of microalgae that are not strictly related to photoautotrophic growth and to obtain high value products. This manuscript reviews studies related to the metabolic aspects of heterotrophic grow of microalga. From the physiological and metabolic perspective, the screening of microalgal strains in different environments and the development of molecular and metabolic engineering tools, will lead to an increase in the number of known microalgae species that growth under strict heterotrophic conditions and the variety of carbon sources used by these microorganisms.


Journal of Physical Chemistry B | 2013

Probing anisotropic structure changes in proteins with picosecond time-resolved small-angle X-ray scattering.

Hyun Sun Cho; Friedrich Schotte; Naranbaatar Dashdorj; John Kyndt; Philip A. Anfinrud

We have exploited the principle of photoselection and the method of time-resolved small-angle X-ray scattering (SAXS) to investigate protein size and shape changes following photoactivation of photoactive yellow protein (PYP) in solution with ∼150 ps time resolution. This study partially overcomes the orientational average intrinsic to solution scattering methods and provides structural information at a higher level of detail. Photoactivation of the p-coumaric acid (pCA) chromophore in PYP produces a highly contorted, short-lived, red-shifted intermediate (pR0), and triggers prompt, protein compaction of approximately 0.3% along the direction defined by the electronic transition dipole moment of the chromophore. Contraction along this dimension is accompanied by expansion along the orthogonal directions, with the net protein volume change being approximately -0.25%. More than half the strain arising from formation of pR0 is relieved by the pR0 to pR1 structure transition (1.8 ± 0.2 ns), with the persistent strain presumably contributing to the driving force needed to generate the spectroscopically blue-shifted pB signaling state. The results reported here are consistent with the near-atomic resolution structural dynamics reported in a recent time-resolved Laue crystallography study of PYP crystals and suggest that the early time structural dynamics in the crystalline state carry over to proteins in solution.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Crystallization and X-ray diffraction studies of cellobiose phosphorylase from Cellulomonas uda

Annelies Van Hoorebeke; Jan Stout; John Kyndt; Manu De Groeve; Ina Dix; Tom Desmet; Wim Soetaert; Jozef Van Beeumen; Savvas N. Savvides

Disaccharide phosphorylases are able to catalyze both the synthesis and the breakdown of disaccharides and have thus emerged as attractive platforms for tailor-made sugar synthesis. Cellobiose phosphorylase from Cellulomonas uda (CPCuda) is an enzyme that belongs to glycoside hydrolase family 94 and catalyzes the reversible breakdown of cellobiose [beta-D-glucopyranosyl-(1,4)-D-glucopyranose] to alpha-D-glucose-1-phosphate and D-glucose. Crystals of ligand-free recombinant CPCuda and of its complexes with substrates and reaction products yielded complete X-ray diffraction data sets to high resolution using synchrotron radiation but suffered from significant variability in diffraction quality. In at least one case an intriguing space-group transition from a primitive monoclinic to a primitive orthorhombic lattice was observed during data collection. The structure of CPCuda was determined by maximum-likelihood molecular replacement, thus establishing a starting point for an investigation of the structural and mechanistic determinants of disaccharide phosphorylase activity.


Biochemistry | 2010

Regulation of the Ppr Histidine Kinase by Light-Induced Interactions between Its Photoactive Yellow Protein and Bacteriophytochrome Domains

John Kyndt; John Fitch; Sven Seibeck; Berthold Borucki; Maarten P. Heyn; Terry E. Meyer; Michael A. Cusanovich

Ppr is a unique bacteriophytochrome that bleaches rather than forming a far-red-shifted Pfr state upon red light activation. Ppr is also unusual in that it has a blue light photoreceptor domain, PYP, which is N-terminally fused to the bacteriophytochrome domain (Bph). When both photoreceptors are activated by light, the fast phase of Bph recovery (1 min lifetime) corresponds to the formation of an intramolecular long-lived complex between the activated PYP domain and the Bph domain (lifetime of 2-3 days). Since this state is unusually long-lived as compared to other intermediates in the photocycle of both PYP and Bph, we interpret this as formation of a metastable complex between activated PYP and Bph domains that takes days to relax. In the metastable complex, the PYP domain is locked in its activated UV absorbing state and the Bph domain is in a slightly red-shifted state (from 701 to 702 nm), which is photochemically inactive to red or white light. The amount of metastable complex formed increases with the degree of prior activation of PYP, reaching a maximum of 50% when PYP is fully activated compared to 0% when no PYP is activated. The saturation of complex formation at 50% is believed to be due to light-induced heterogeneity within the Ppr dimer. UV irradiation (365 nm) of the metastable complex state photoreverses the activated PYP and the red-shifted Bph to the initial dark state within seconds. We therefore postulate that Ppr functions as a UV-red light sensor and describe the different Ppr states that can be obtained depending on the light quality. Both red and white light upregulate the autokinase activity, while it is downregulated in the dark. The physiological state of Ppr is most likely a mixture of three different states, dark, metastable complex, and red light-activated, with fractional populations whose amounts depend on the light quality of the environment and that regulate the extent of phosphorylation by the kinase.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Crystallization and X-ray diffraction studies of inverting trehalose phosphorylase from Thermoanaerobacter sp.

Annelies Van Hoorebeke; Jan Stout; Ruben Van der Meeren; John Kyndt; Jozef Van Beeumen; Savvas N. Savvides

Disaccharide phosphorylases are attractive enzymatic platforms for tailor-made sugar synthesis owing to their ability to catalyze both the synthesis and the breakdown of disaccharides. Trehalose phosphorylase from Thermoanaerobacter sp. (TP) is a glycoside hydrolase family 65 enzyme which catalyzes the reversible breakdown of trehalose [D-glucopyranosyl-alpha(1,1)alpha-D-glucopyranose] to beta-D-glucose 1-phosphate and D-glucose. Recombinant purified protein was produced in Escherichia coli and crystallized in space group P2(1)2(1)2(1). Crystals of recombinant TP were obtained in their native form and were soaked with glucose, with n-octyl-beta-D-glucoside and with trehalose. The crystals presented a number of challenges including an unusually large unit cell, with a c axis measuring 420 A, and variable diffraction quality. Crystal-dehydration protocols led to improvements in diffraction quality that were often dramatic, typically from 7-8 to 3-4 A resolution. The structure of recombinant TP was determined by molecular replacement to 2.8 A resolution, thus establishing a starting point for investigating the structural and mechanistic determinants of the disaccharide phosphorylase activity. To the best of our knowledge, this is the first crystal structure determination of an inverting trehalose phosphorylase.


Journal of the American Chemical Society | 2016

Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering

Hyun Sun Cho; Friedrich Schotte; Naranbaatar Dashdorj; John Kyndt; Robert Henning; Philip A. Anfinrud

The capacity to respond to environmental changes is crucial to an organisms survival. Halorhodospira halophila is a photosynthetic bacterium that swims away from blue light, presumably in an effort to evade photons energetic enough to be genetically harmful. The protein responsible for this response is believed to be photoactive yellow protein (PYP), whose chromophore photoisomerizes from trans to cis in the presence of blue light. We investigated the complete PYP photocycle by acquiring time-resolved small and wide-angle X-ray scattering patterns (SAXS/WAXS) over 10 decades of time spanning from 100 ps to 1 s. Using a sequential model, global analysis of the time-dependent scattering differences recovered four intermediates (pR0/pR1, pR2, pB0, pB1), the first three of which can be assigned to prior time-resolved crystal structures. The 1.8 ms pB0 to pB1 transition produces the PYP signaling state, whose radius of gyration (Rg = 16.6 Å) is significantly larger than that for the ground state (Rg = 14.7 Å) and is therefore inaccessible to time-resolved protein crystallography. The shape of the signaling state, reconstructed using GASBOR, is highly anisotropic and entails significant elongation of the long axis of the protein. This structural change is consistent with unfolding of the 25 residue N-terminal domain, which exposes the β-scaffold of this sensory protein to a potential binding partner. This mechanistically detailed description of the complete PYP photocycle, made possible by time-resolved crystal and solution studies, provides a framework for understanding signal transduction in proteins and for assessing and validating theoretical/computational approaches in protein biophysics.


Archives of Microbiology | 2010

Evidence from the structure and function of cytochromes c2 that nonsulfur purple bacterial photosynthesis followed the evolution of oxygen respiration

Terry E. Meyer; Gonzalez Van Driessche; R P Ambler; John Kyndt; Bart Devreese; Jozef Van Beeumen; Michael A. Cusanovich

Cytochromes c2 are the nearest bacterial homologs of mitochondrial cytochrome c. The sequences of the known cytochromes c2 can be placed in two subfamilies based upon insertions and deletions, one subfamily is most like mitochondrial cytochrome c (the small C2s, without significant insertions and deletions), and the other, designated large C2, shares 3- and 8-residue insertions as well as a single-residue deletion. C2s generally function between cytochrome bc1 and cytochrome oxidase in respiration (ca 80 examples known to date) and between cytochrome bc1 and the reaction center in nonsulfur purple bacterial photosynthesis (ca 21 examples). However, members of the large C2 subfamily are almost always involved in photosynthesis (12 of 14 examples). In addition, the gene for the large C2 (cycA) is associated with those for the photosynthetic reaction center (pufBALM). We hypothesize that the insertions in the large C2s, which were already functioning in photosynthesis, allowed them to replace the membrane-bound tetraheme cytochrome, PufC, that otherwise mediates between the small C2 or other redox proteins and photosynthetic reaction centers. Based upon our analysis, we propose that the involvement of C2 in nonsulfur purple bacterial photosynthesis was a metabolic feature subsequent to the evolution of oxygen respiration.

Collaboration


Dive into the John Kyndt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maarten P. Heyn

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge