Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John L. Lindquist is active.

Publication


Featured researches published by John L. Lindquist.


Weed Science | 2002

Critical period for weed control: the concept and data analysis

Stevan Z. Knezevic; Sean P. Evans; Erin E. Blankenship; Rene C. Van Acker; John L. Lindquist

Abstract The critical period for weed control (CPWC) is a period in the crop growth cycle during which weeds must be controlled to prevent yield losses. Knowing the CPWC is useful in making decisions on the need for and timing of weed control and in achieving efficient herbicide use from both biological and economic perspectives. An increase in the use of herbicide-tolerant crops, especially soybean resistant to glyphosate, has stimulated interest in the concept of CPWC. Recently, several studies examined this concept in glyphosate-resistant corn and soybean across the midwestern United States. However, these studies presented various methods for data analysis and reported CPWC on the basis of a variety of crop- or weed-related parameters. The objectives of this study are (1) to provide a review of the concept and studies of the CPWC, (2) to suggest a common method to standardize the process of data analysis, and (3) to invite additional discussions for further debate on the subject. Wide adoption of the suggested method of data analysis will allow easier comparison of the results among sites and between researchers. Nomenclature: Glyphosate; corn, Zea mays L.; soybean, Glycine max (L.) Merr.


Weed Science | 2003

Nitrogen application influences the critical period for weed control in corn

Sean P. Evans; Stevan Z. Knezevic; John L. Lindquist; Charles A. Shapiro; Erin E. Blankenship

Abstract The critical period for weed control (CPWC) is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. Field studies were conducted in 1999 and 2000 in eastern Nebraska to evaluate the influence of nitrogen application on the CPWC in dryland corn in competition with a naturally occurring weed population. Nitrogen fertilizer was applied at rates equivalent to 0, 60, and 120 kg N ha−1. A quantitative series of treatments of both increasing duration of weed interference and length of weed-free period were imposed within each nitrogen main plot. The beginning and end of the CPWC based on an arbitrarily 5% acceptable yield loss level were determined by fitting the logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed-free period, respectively. Despite an inconsistent response of corn grain yield to applied nitrogen, there was a noticeable influence on the CPWC. The addition of 120 kg N ha−1 delayed the beginning of the CPWC for all site–years when compared with the 0-kg N ha−1 rate and for three of the four site–years when compared with the 60-kg N ha−1 rate. The addition of 120 kg N ha−1 also hastened the end of the CPWC at three of the four site–years when compared with both reduced rates. The yield component most sensitive to both nitrogen and interference from weeds was seed number per ear. Practical implications of this study are that reductions in nitrogen use may create the need for more intensive weed management. Nomenclature: Glyphosate; corn, Zea mays L. ‘Dekalb DK589RR’.


Weed Science | 2005

Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti )

Kimberly D. Bonifas; Daniel T. Walters; Kenneth G. Cassman; John L. Lindquist

Abstract Competitive outcome between crops and weeds is affected by partitioning of new biomass to above- and belowground plant organs in response to nutrient supply. This study determined the fraction of biomass partitioned to roots vs. shoots in corn and velvetleaf in response to nitrogen (N) supply. Pots measuring 28 cm in diam and 60 cm deep were embedded in the ground and each contained one plant of either corn or velvetleaf. Each plant received one of three N treatments: 0, 1, or 3 g N applied as ammonium nitrate in 2001, and 0, 2, or 6 g N in 2002. Measurements of total above- and belowground biomass were made at 10 sampling dates during each growing season. The root:shoot ratio decreased over time for both corn and velvetleaf as a result of normal plant growth and as N supply increased. Root:shoot ratio was greater for corn than for velvetleaf at comparable stages of development and at all levels of N supply. Both corn and velvetleaf display true plasticity in biomass partitioning patterns in response to N supply. Velvetleaf root:shoot ratio increased by 46 to 82% when N was limiting in 2001 and 2002, respectively, whereas corn root:shoot ratio increased by only 29 to 45%. The greater increase in biomass partitioned to roots by velvetleaf might negatively impact its ability to compete with corn for light when N supply is limited. Nomenclature: Velvetleaf, Abutilon theophrasti Medic., ABUTH; corn, Zea mays L.


Weed Science | 2006

Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices

Shawn M. Hock; Stevan Z. Knezevic; Alex Martin; John L. Lindquist

Abstract Weed competitiveness can be quantified with the concept of competitive index (CI), a relative scale of weed competitiveness. Field studies were conducted in 2002 and 2003 in northeastern and southeastern Nebraska to evaluate the influence of soybean row spacing and relative weed emergence time on the competitiveness of major weed species in soybean. Ten weed species were seeded in soybean spaced 19 and 76 cm apart at the planting, emergence, and first trifoliate leaf stages of soybean. Total weed dry matter (TDM), weed plant volume, and percent soybean yield loss were arbitrarily selected as a base for determining the CI for each weed species. Soybean yield loss was the least variable parameter used to quantify weed competitiveness and rank their CIs. In general, weeds grown with soybean planted in 19-cm rows produced less TDM, plant volume, and reduced soybean yield less than weed species grown in 76-cm rows. Later-emerging weeds produced less TDM, plant volume, and reduced soybean yield less than the early-emerging ones. In general, broadleaf species were more competitive than grass weed species. Common sunflower was the most competitive weed species in this study. Nomenclature: Common sunflower, Helianthus annuus L. HELAN; soybean, Glycine max (L.) Merr. ‘Agripro 2502’, ‘Agripro 2703’.


Weed Science | 2003

Influence of nitrogen and duration of weed interference on corn growth and development

Sean P. Evans; Stevan Z. Knezevic; John L. Lindquist; Charles A. Shapiro

Abstract An improved understanding of the effects of nitrogen (N) on crop–weed interactions is needed for the development of integrated weed management systems where responsible use of N fertilizers is considered. Field experiments conducted in 1999 and 2000 at two locations in eastern Nebraska quantify the effects of N and increasing duration of weed interference on corn growth and development. A naturally occurring population of weeds was allowed to compete with the corn crop for increasing lengths of time and at three rates of N application (0, 60, and 120 kg N ha−1). Weed interference and withholding applied N increased the time to 50% silking by an average of 3.9 and 2.9 d, respectively. Regardless of treatments, relative growth rates of corn leaf area and biomass were maximized between the V1 and V2 growth stages of corn and increased linearly with N rate but were affected to a lesser extent by weed presence. The improvement in early season corn growth with addition of N resulted in greater leaf area, biomass, and height, which improved the competitive ability of corn against weeds. Reductions in maximum corn leaf area and height due to weed interference usually began earlier and were more extensive at reduced rates of N. Partitioning of biomass to reproductive structures increased with N during reproductive stages, likely contributing to greater harvest indices at the end of the season. Results from this study indicate that the effects of N fertilization on early-season crop growth provided a competitive advantage for corn relative to weeds, thereby increasing the length of time that weeds could compete with a crop before removal was required, but further research is needed to identify mechanisms regarding improved crop tolerance to weeds. Nomenclature: Corn, Zea mays L. ‘DK589RR’.


Weed Science | 2005

Environmental factors affecting seed persistence of annual weeds across the U.S. corn belt

Adam S. Davis; John Cardina; Frank Forcella; Gregg A. Johnson; George O. Kegode; John L. Lindquist; Edward C. Luschei; Karen A. Renner; Christy L. Sprague; Martin M. Williams

Abstract Weed seedbanks have been studied intensively at local scales, but to date, there have been no regional-scale studies of weed seedbank persistence. Empirical and modeling studies indicate that reducing weed seedbank persistence can play an important role in integrated weed management. Annual seedbank persistence of 13 summer annual weed species was studied from 2001 through 2003 at eight locations in the north central United States and one location in the northwestern United States. Effects of seed depth placement, tillage, and abiotic environmental factors on seedbank persistence were examined through regression and multivariate ordinations. All species examined showed a negative relationship between hydrothermal time and seedbank persistence. Seedbank persistence was very similar between the two years of the study for common lambsquarters, giant foxtail, and velvetleaf when data were pooled over location, depth, and tillage. Seedbank persistence of common lambsquarters, giant foxtail, and velvetleaf from October 2001 through 2002 and October 2002 through 2003 was, respectively, 52.3% and 60.0%, 21.3% and 21.8%, and 57.5% and 57.2%. These results demonstrate that robust estimates of seedbank persistence are possible when many observations are averaged over numerous locations. Future studies are needed to develop methods of reducing seedbank persistence, especially for weed species with particularly long-lived seeds. Nomenclature: Common lambsquarters, Chenopodium album L. CHEAL; giant foxtail, Setaria faberi Herrm. SETFA; velvetleaf, Abutilon theophrasti Medik. ABUTH.


Weed Science | 2013

Mechanical Termination of Diverse Cover Crop Mixtures for Improved Weed Suppression in Organic Cropping Systems

Sam E. Wortman; Charles Francis; Mark Bernards; Erin E. Blankenship; John L. Lindquist

Abstract Cover crops can provide many benefits in agroecosystems, including the opportunity for improved weed control. However, the weed suppressive potential of cover crops may depend on the species (or mixture of species) chosen, and the method of cover crop termination and residue management. The objective of this study was to determine the effects of cover crop mixture and mechanical termination method on weed biomass and density, and relative crop yield in an organic cropping system. A field experiment was conducted from 2009 to 2011 near Mead, NE, where spring-sown mixtures of two, four, six, and eight cover crop species were included in a sunflower–soybean–corn crop rotation. Cover crops were planted in late March, terminated in late May using a field disk or sweep plow undercutter, and main crops were planted within 1 wk of termination. Terminating cover crops with the undercutter consistently reduced early-season grass weed biomass, whereas termination with the field disk typically stimulated grass weed biomass relative to a no cover crop control (NC). The effects of cover crop mixture were not evident in 2009, but the combination of the undercutter and the eight-species mixture reduced early-season weed biomass by 48% relative to the NC treatment in 2010. Cover crops provided less weed control in 2011, where only the combination of the undercutter and the two-species mixture reduced weed biomass (by 31%) relative to the NC treatment. Termination with the undercutter resulted in relative yield increases of 16.6 and 22.7% in corn and soybean, respectively. In contrast, termination with the field disk resulted in a relative yield reduction of 13.6% in soybean. The dominant influence of termination method highlights the importance of appropriate cover crop residue management in maximizing potential agronomic benefits associated with cover crops. Nomenclature: Common lambsquarters, Chenopodium album L. CHEAL; green foxtail, Setaria viridis (L.) Beauv. SETVI; redroot pigweed, Amaranthus retroflexus L. AMARE; velvetleaf, Abutilon theophrasti Medik. ABUTH; confectionary sunflower, Helianthus annuus L.; maize, Zea mays L.; soybean, Glycine max (L.) Merr


Weed Science | 2001

Performance of INTERCOM for predicting corn–velvetleaf interference across north-central United States

John L. Lindquist

Abstract Cost-effective weed management requires accurate estimates of yield and the potential yield loss resulting from weed infestations. However, crop yield and the effects of weeds are highly variable across years and locations. Ecophysiological models may be useful for predicting the effects of environment and management on crop and weed growth and competitive ability. Ability of the model INTERCOM to predict corn (Zea mays) growth and yield, velvetleaf (Abutilon theophrasti) interference on corn yield loss, and single-year economic threshold velvetleaf density (Te) was evaluated using 13 data sets collected in four states. Predicted and observed monoculture corn total aboveground biomass and leaf area index were in close agreement for most of the growing season. Predicted and observed weed-free corn yields were in agreement for yields ranging from 8 to 13 Mg ha−1 but were over- and underpredicted under low-yielding and near-optimal production conditions, respectively. Predicted and observed corn yield loss agreed well across the full range of observed velvetleaf densities for five to nine location years, depending on the performance criterion used. Estimates of Te calculated from predicted weed-free yield and yield loss relationships were an average of 6% smaller than those calculated from observed data, indicating that the model predicts a conservative value of Te in most cases. Although results are encouraging, they indicate that further research is needed to improve the capacity of INTERCOM for predicting weed-free yield and corn–velvetleaf interference. Nomenclature: Corn, Zea mays L.; velvetleaf, Abutilon theophrasti Medic. ABUTH.


Renewable Agriculture and Food Systems | 2010

Increased weed diversity, density and above-ground biomass in long-term organic crop rotations

Sam E. Wortman; John L. Lindquist; Milton J. Haar; Charles Francis

While weed management is consistently a top priority among farmers, there is also growing concern for the conservation of biodiversity. Maintaining diverse weed communities below bioeconomic thresholds may provide ecosystem services for the crop and the surrounding ecosystem. This study was conducted to determine if weed diversity, density and biomass differ within and among organic and conventional crop rotations. In 2007 and 2008, we sampled weed communities in four long-term crop rotations near Mead, Nebraska using seedbank analyses (elutriation and greenhouse emergence) and above-ground biomass sampling. Two conventional crop rotations consisted of a corn (Zea mays) or sorghum (Sorghum bicolor)–soybean (Glycine max)–sorghum or corn–soybean sequence and a diversified corn or sorghum–sorghum or corn– soybean–wheat (Triticum aestivum) sequence. Two organic rotations consisted of an animal manure-based soybean–corn or sorghum–soybean–wheat sequence and a green manure-based alfalfa (Medicago sativa)–alfalfa–corn or sorghum–wheat sequence. Species diversity of the weed seedbank and the above-ground weed community, as determined by the Shannon diversity index, were greatest in the organic green manure rotation. Averaged across all sampling methods and years, the weed diversity index of the organic green manure rotation was 1.07, followed by the organic animal manure (0.78), diversified conventional (0.76) and conventional (0.66) rotations. The broadleaf weed seedbank density in the tillage layer of the organic animal manure rotation was 1.4r, 3.1r and 5.1r greater than the organic green manure, diversified conventional and conventional rotations, respectively. The grass weed seedbank density in the tillage layer of the organic green manure rotation was 2.0r, 6.1r and 6.4r greater than the organic animal manure, diversified conventional and conventional rotations, respectively. The above-ground weed biomass was generally greatest in the organic rotations. The broadleaf weed biomass in sorghum and wheat did not differ between organic and conventional rotations (CRs), but grass weed biomass was greater in organic compared to CRs for all crops. The above-ground weed biomass did not differ within CRs, and within organic rotations the grass weed biomass was generally greatest in the organic green manure rotation. The weed seedbank and above-ground weed communities that have accumulated in these rotations throughout the experiment suggest a need for greater management in long-term organic rotations that primarily include annual crops. However, results suggest that including a perennial forage crop in organic rotations may reduce broadleaf weed seedbank populations and increase weed diversity.


Weed Science | 2006

Effect of nitrogen addition on the comparative productivity of corn and velvetleaf (Abutilon theophrasti )

Darren C. Barker; Stevan Z. Knezevic; Alex Martin; Daniel T. Walters; John L. Lindquist

Abstract Weeds that respond more to nitrogen fertilizer than crops may be more competitive under high nitrogen (N) conditions. Therefore, understanding the effects of nitrogen on crop and weed growth and competition is critical. Field experiments were conducted at two locations in 1999 and 2000 to determine the influence of varying levels of N addition on corn and velvetleaf height, leaf area, biomass accumulation, and yield. Nitrogen addition increased corn and velvetleaf height by a maximum of 15 and 68%, respectively. N addition increased corn and velvetleaf maximum leaf area index (LAI) by up to 51 and 90%. Corn and velvetleaf maximum biomass increased by up to 68 and 89% with N addition. Competition from corn had the greatest effect on velvetleaf growth, reducing its biomass by up to 90% compared with monoculture velvetleaf. Corn response to N addition was less than that of velvetleaf, indicating that velvetleaf may be most competitive at high levels of nitrogen and least competitive when nitrogen le...

Collaboration


Dive into the John L. Lindquist's collaboration.

Top Co-Authors

Avatar

Stevan Z. Knezevic

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Daniel T. Walters

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Amit J. Jhala

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Werle

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Kenneth G. Cassman

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Arkebauer

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

David A. Mortensen

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Haishun Yang

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

A. Dobermann

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Adam S. Davis

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge