Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John L. McElwee is active.

Publication


Featured researches published by John L. McElwee.


BMC Cancer | 2012

Identification of PADI2 as a potential breast cancer biomarker and therapeutic target

John L. McElwee; Sunish Mohanan; Obi L. Griffith; Heike C Breuer; Lynne J. Anguish; Brian D. Cherrington; Ashley Palmer; Louise R. Howe; Venkataraman Subramanian; Corey P. Causey; Paul R. Thompson; Joe W. Gray

BackgroundWe have recently reported that the expression of peptidylarginine deiminase 2 (PADI2) is regulated by EGF in mammary cancer cells and appears to play a role in the proliferation of normal mammary epithelium; however, the role of PADI2 in the pathogenesis of human breast cancer has yet to be investigated. Thus, the goals of this study were to examine whether PADI2 plays a role in mammary tumor progression, and whether the inhibition of PADI activity has anti-tumor effects.MethodsRNA-seq data from a collection of 57 breast cancer cell lines was queried for PADI2 levels, and correlations with known subtype and HER2/ERBB2 status were evaluated. To examine PADI2 expression levels during breast cancer progression, the cell lines from the MCF10AT model were used. The efficacy of the PADI inhibitor, Cl-amidine, was tested in vitro using MCF10DCIS cells grown in 2D-monolayers and 3D-spheroids, and in vivo using MCF10DCIS tumor xenografts. Treated MCF10DCIS cells were examined by flow-cytometry to determine the extent of apoptosis and by RT2 Profiler PCR Cell Cycle Array to detect alterations in cell cycle associated genes.ResultsWe show by RNA-seq that PADI2 mRNA expression is highly correlated with HER2/ERBB2 (p = 2.2 × 106) in luminal breast cancer cell lines. Using the MCF10AT model of breast cancer progression, we then demonstrate that PADI2 expression increases during the transition of normal mammary epithelium to fully malignant breast carcinomas, with a strong peak of PADI2 expression and activity being observed in the MCF10DCIS cell line, which models human comedo-DCIS lesions. Next, we show that a PADI inhibitor, Cl-amidine, strongly suppresses the growth of MCF10DCIS monolayers and tumor spheroids in culture. We then carried out preclinical studies in nude (nu/nu) mice and found that Cl-amidine also suppressed the growth of xenografted MCF10DCIS tumors by more than 3-fold. Lastly, we performed cell cycle array analysis of Cl-amidine treated and control MCF10DCIS cells, and found that the PADI inhibitor strongly affects the expression of several cell cycle genes implicated in tumor progression, including p21, GADD45α, and Ki67.ConclusionTogether, these results suggest that PADI2 may function as an important new biomarker for HER2/ERBB2+ tumors and that Cl-amidine represents a new candidate for breast cancer therapy.


Journal of Cellular Physiology | 2006

Segregation of micron-scale membrane sub-domains in live murine sperm.

Vimal Selvaraj; Atsushi Asano; Danielle E. Buttke; John L. McElwee; Jacquelyn L. Nelson; Collin A. Wolff; Tanya Merdiushev; Miguel W. Fornés; Alex W. Cohen; Michael P. Lisanti; George H. Rothblat; Gregory S. Kopf; Alexander J. Travis

Lipid rafts, membrane sub‐domains enriched in sterols and sphingolipids, are controversial because demonstrations of rafts have often utilized fixed cells. We showed in living sperm that the ganglioside GM1 localized to a micron‐scale membrane sub‐domain in the plasma membrane overlying the acrosome. We investigated four models proposed for membrane sub‐domain maintenance. GM1 segregation was maintained in live sperm incubated under non‐capacitating conditions, and after sterol efflux, a membrane alteration necessary for capacitation. The complete lack of GM1 diffusion to the post‐acrosomal plasma membrane (PAPM) in live cells argued against the transient confinement zone model. However, within seconds after cessation of sperm motility, GM1 dramatically redistributed several microns from the acrosomal sub‐domain to the post‐acrosomal, non‐raft sub‐domain. This redistribution was not accompanied by movement of sterols, and was induced by the pentameric cholera toxin subunit B (CTB). These data argued against a lipid–lipid interaction model for sub‐domain maintenance. Although impossible to rule out a lipid shell model definitively, mice lacking caveolin‐1 maintained segregation of both sterols and GM1, arguing against a role for lipid shells surrounding caveolin‐1 in sub‐domain maintenance. Scanning electron microscopy of sperm freeze‐dried without fixation identified cytoskeletal structures at the sub‐domain boundary. Although drugs used to disrupt actin and intermediate filaments had no effect on the segregation of GM1, we found that disulfide‐bonded proteins played a significant role in sub‐domain segregation. Together, these data provide an example of membrane sub‐domains extreme in terms of size and stability of lipid segregation, and implicate a protein‐based membrane compartmentation mechanism.


Biochemistry Research International | 2012

Potential Role of Peptidylarginine Deiminase Enzymes and Protein Citrullination in Cancer Pathogenesis

Sunish Mohanan; Brian D. Cherrington; Sachi Horibata; John L. McElwee; Paul R. Thompson

The peptidylarginine deiminases (PADs) are a family of posttranslational modification enzymes that catalyze the conversion of positively charged protein-bound arginine and methylarginine residues to the uncharged, nonstandard amino acid citrulline. This enzymatic activity is referred to as citrullination or, alternatively, deimination. Citrullination can significantly affect biochemical pathways by altering the structure and function of target proteins. Five mammalian PAD family members (PADs 1–4 and 6) have been described and show tissue-specific distribution. Recent reviews on PADs have focused on their role in autoimmune diseases. Here, we will discuss the potential role of PADs in tumor progression and tumor-associated inflammation. In the context of cancer, increasing clinical evidence suggests that PAD4 (and possibly PAD2) has important roles in tumor progression. The link between PADs and cancer is strengthened by recent findings showing that treatment of cell lines and mice with PAD inhibitors significantly suppresses tumor growth and, interestingly, inflammatory symptoms. At the molecular level, transcription factors, coregulators, and histones are functional targets for citrullination by PADs, and citrullination of these targets can affect gene expression in multiple tumor cell lines. Next generation isozyme-specific PAD inhibitors may have therapeutic potential to regulate both the inflammatory tumor microenvironment and tumor cell growth.


PLOS ONE | 2012

Potential Role for PAD2 in Gene Regulation in Breast Cancer Cells

Brian D. Cherrington; Xuesen Zhang; John L. McElwee; Eric Morency; Lynne J. Anguish

The peptidylarginine deiminase (PAD) family of enzymes post-translationally convert positively charged arginine residues in substrate proteins to the neutral, non-standard residue citrulline. PAD family members 1, 2, 3, and 6 have previously been localized to the cell cytoplasm and, thus, their potential to regulate gene activity has not been described. We recently demonstrated that PAD2 is expressed in the canine mammary gland epithelium and that levels of histone citrullination in this tissue correlate with PAD2 expression. Given these observations, we decided to test whether PAD2 might localize to the nuclear compartment of the human mammary epithelium and regulate gene activity in these cells. Here we show, for the first time, that PAD2 is specifically expressed in human mammary gland epithelial cells and that a portion of PAD2 associates with chromatin in MCF-7 breast cancer cells. We investigated a potential nuclear function for PAD2 by microarray, qPCR, and chromatin immunoprecipitation analysis. Results show that the expression of a unique subset of genes is disregulated following depletion of PAD2 from MCF-7 cells. Further, ChIP analysis of two of the most highly up- and down-regulated genes (PTN and MAGEA12, respectively) found that PAD2 binds directly to these gene promoters and that the likely mechanism by which PAD2 regulates expression of these genes is via citrullination of arginine residues 2–8–17 on histone H3 tails. Thus, our findings define a novel role for PAD2 in gene expression in human mammary epithelial cells.


Frontiers in Immunology | 2013

Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study

Sunish Mohanan; Sachi Horibata; John L. McElwee; Andrew J. Dannenberg

PAD4-mediated hypercitrullination of histone H4 arginine 3 (H4R3) has been previously found to promote the formation of Neutrophil Extracellular Traps in inflamed tissues and the resulting histone H4 citrulline 3 (H4Cit3) modification is thought to play a key role in extracellular trap (ET) formation by promoting chromatin decondensation. In addition to neutrophils, macrophages have also recently been found to generate functional extracellular traps (METs). However, a role for PADs in ET formation in macrophages has not been previously described. Transcripts for PAD2 and PAD4 are found in mature macrophages and these cells can be induced to citrullinate proteins, thus raising the possibility that PADs may play a direct role in ET formation in macrophages via histone hypercitrullination. In breast and visceral white adipose tissue from obese patients, infiltrating macrophages are often seen to surround dead adipocytes forming characteristic “crown-like structures” (CLS) and the presence of these lesions is associated with increased levels of inflammatory mediators. In light of these observations, we have initiated studies to test whether PADs are expressed in CLS macrophages and whether these macrophages might form METs. Our preliminary findings show that PAD2 (and to a lesser extent, PAD4) is expressed in both in the macrophage cell line (RAW 264.7) and in CLS lesions. Additionally, we provide evidence that macrophage-derived extracellular histones are seen around presumptive macrophages within CLS lesions and that these histones contain the H4Cit3 modification. These initial findings support our hypothesis that obesity-induced adipose tissue inflammation promotes the formation of METs within CLS lesions via PAD-mediated histone hypercitrullination. Subsequent studies are underway to further validate these findings and to investigate the role in PAD-mediated MET formation in CLS function in the mammary gland.


Methods | 2015

Single molecule and single cell epigenomics

Byung-Ryool Hyun; John L. McElwee; Paul D. Soloway

Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells.


Genomics | 2003

Radiation hybrid map, physical map, and low-pass genomic sequence of the canine prcd region on CFA9 and comparative mapping with the syntenic region on human chromosome 17

D.J. Sidjanin; Brian J. Miller; J Kijas; John L. McElwee; Jaroslaw Pillardy; Joel A. Malek; G Pai; Tamara Feldblyum; Claire M. Fraser; Gregory M. Acland; Gustavo D. Aguirre

Progressive rod-cone degeneration (prcd) is a canine retinal disease that maps to the centromeric end of CFA9 in a region of synteny with the distal part of HSA17q. As such, prcd has been postulated as the only animal model of RP17, a human retinitis pigmentosa locus that maps to 17q22. In an effort to establish more detailed regions of synteny between dog CFA9 and the HSA17q-ter region, we created a robust gene-enriched CFA9-RH08(3000) map with 34 gene-based markers and 12 microsatellites, with the highest resolution and number of markers for the centromeric end of CFA9. Furthermore, we built an approximately 1.5-Mb physical map containing both GRB2 and GALK1, genes so far identified by meiotic linkage analysis as being closest to the prcd locus, and generated about 1.2 Mb low-pass (3.2x) canine sequence. Canine to human comparative sequence analysis identified 49 transcripts that had been previously mapped to the HSA17q25 region. The generated low-pass canine sequence was annotated with a working draft of human sequence from HSA17q25, and we used this scaffold to order and orient the canine sequence against human. This order and orientation are preliminary, as high-throughput genomic sequencing of HSA17q-ter has not been fully completed.


Cancer Research | 2014

PAD2 Overexpression in Transgenic Mice Promotes Spontaneous Skin Neoplasia

John L. McElwee; Sunish Mohanan; Sachi Horibata; Kelly L. Sams; Lynne J. Anguish; Dalton McLean; Iva Cvitaš; Joseph J. Wakshlag; Scott A. Coonrod

Peptidylarginine deiminase 2 (PAD2/PADI2) has been implicated in various inflammatory diseases and, more recently, cancer. The goal of this study was to test the hypothesis that PAD2 promotes oncogenesis using a transgenic mouse model. We found that about 37% of transgenic mice overexpressing human FLAG-PAD2 downstream of the MMTV-LTR promoter develop spontaneous neoplastic skin lesions. Molecular and histopathologic analyses of the resulting lesions find that they contain increased levels of markers for invasion, inflammation, and epithelial-to-mesenchymal transition (EMT) and that a subset of the lesions progress to invasive squamous cell carcinoma (SCC). We then stably overexpressed FLAG-PAD2 in the human SCC cell line, A431, and found that the PAD2-overexpressing cells were more tumorigenic in vitro and also contained elevated levels of markers for inflammation and EMT. Collectively, these studies provide the first genetic evidence that PAD2 functions as an oncogene and suggest that PAD2 may promote tumor progression by enhancing inflammation within the tumor microenvironment.


BMC Genetics | 2010

High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5

Yung-Hao Ching; Robert J. Munroe; Jennifer L. Moran; Anna K. Barker; Evan Mauceli; Timothy Fennell; Frederica diPalma; Kerstin Lindblad-Toh; Lindsay M Abcunas; Joyanna F Gilmour; Tanya P. Harris; Susan L Kloet; Yunhai Luo; John L. McElwee; Weipeng Mu; Hyo K Park; David L Rogal; Kerry J. Schimenti; Lishuang Shen; Mami Shindo; James Y Shou; Erin K Stenson; Patrick J. Stover; John C. Schimenti

BackgroundForward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals.ResultsWe report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (Tbc1d14, Nol14, Tyms, Cad, Fbxl5, Haus3), and mutations in genes we or others previously reported (Tapt1, Rest, Ugdh, Paxip1, Hmx1, Otoe, Nsun7). We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in Tbc1d14 provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis.ConclusionThis collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.


BMC Cancer | 2017

Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration

Sachi Horibata; Katherine E. Rogers; David Sadegh; Lynne J. Anguish; John L. McElwee; Pragya Shah; Paul R. Thompson

BackgroundPenetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process.MethodsFor our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes in cell migration and cell morphology. We also used these PAD2-modulated cells to test whether PAD2 may be required for EGF-induced cell migration. To determine how PAD2 might promote tumor cell migration in vivo, we tested the effects of PAD2 inhibition on the expression of several cell migration mediators in MCF10DCIS.com xenograft tumors. In addition, we tested the effect of PAD2 inhibition on EGF-induced ductal invasion and elongation in primary mouse mammary organoids. Lastly, using a transgenic mouse model, we investigated the effects of PAD2 overexpression on mammary gland development.ResultsOur results indicate that PAD2 depletion or inhibition suppresses cell migration and alters the morphology of MCF10DCIS.com cells. In addition, we found that PAD2 depletion suppresses the expression of the cytoskeletal regulatory proteins RhoA, Rac1, and Cdc42 and also promotes a mesenchymal to epithelial-like transition in tumor cells with an associated increase in the cell adhesion marker, E-cadherin. Our mammary gland organoid study found that inhibition of PAD2 activity suppresses EGF-induced ductal invasion. In vivo, we found that PAD2 overexpression causes hyperbranching in the developing mammary gland.ConclusionTogether, these results suggest that PAD2 plays a critical role in breast cancer cell migration. Our findings that EGF treatment increases protein citrullination and that PAD2 inhibition blocks EGF-induced cell migration suggest that PAD2 likely functions within the EGF signaling pathway to mediate cell migration.

Collaboration


Dive into the John L. McElwee's collaboration.

Top Co-Authors

Avatar

Duska J. Sidjanin

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sachi Horibata

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge