Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John L. Wallace is active.

Publication


Featured researches published by John L. Wallace.


Gastroenterology | 2011

Proton Pump Inhibitors Exacerbate NSAID-Induced Small Intestinal Injury by Inducing Dysbiosis

John L. Wallace; Stephanie D. Syer; Emmanuel Denou; Giada De Palma; Linda Vong; Webb McKnight; Jennifer Jury; Manlio Bolla; Premysl Bercik; Stephen M. Collins; Elena F. Verdu; Ennio Ongini

BACKGROUND & AIMS Proton pump inhibitors (PPIs) and nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used classes of drugs, with the former frequently coprescribed to reduce gastroduodenal injury caused by the latter. However, suppression of gastric acid secretion by PPIs is unlikely to provide any protection against the damage caused by NSAIDs in the more distal small intestine. METHODS Rats were treated with antisecretory doses of omeprazole or lanzoprazole for 9 days, with concomitant treatment with anti-inflammatory doses of naproxen or celecoxib on the final 4 days. Small intestinal damage was blindly scored, and changes in hematocrit were measured. Changes in small intestinal microflora were evaluated by denaturing gradient gel electrophoresis and reverse-transcription polymerase chain reaction. RESULTS Both PPIs significantly exacerbated naproxen- and celecoxib-induced intestinal ulceration and bleeding in the rat. Omeprazole treatment did not result in mucosal injury or inflammation; however, there were marked shifts in numbers and types of enteric bacteria, including a significant reduction (∼80%) of jejunal Actinobacteria and Bifidobacteria spp. Restoration of small intestinal Actinobacteria numbers through administration of selected (Bifidobacteria enriched) commensal bacteria during treatment with omeprazole and naproxen prevented intestinal ulceration/bleeding. Colonization of germ-free mice with jejunal bacteria from PPI-treated rats increased the severity of NSAID-induced intestinal injury, as compared with mice colonized with bacteria from vehicle-treated rats. CONCLUSIONS PPIs exacerbate NSAID-induced intestinal damage at least in part because of significant shifts in enteric microbial populations. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of NSAID enteropathy.


British Journal of Pharmacology | 2010

Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346)

John L. Wallace; Giuseppe Caliendo; Vincenzo Santagada; Giuseppe Cirino

Background and purpose:  Hydrogen sulphide is an important mediator of gastric mucosal defence. The use of non‐steroidal anti‐inflammatory drugs continues to be limited by their toxicity, particularly in the upper gastrointestinal tract. We evaluated the gastrointestinal safety and anti‐inflammatory efficacy of a novel hydrogen sulphide‐releasing derivative of naproxen, ATB‐346 [2‐(6‐methoxy‐napthalen‐2‐yl)‐propionic acid 4‐thiocarbamoyl‐phenyl ester].


British Journal of Pharmacology | 2012

NSAID gastropathy and enteropathy: distinct pathogenesis likely necessitates distinct prevention strategies

John L. Wallace

The mechanisms underlying the ability of nonsteroidal anti‐inflammatory drugs (NSAIDs) to cause ulceration in the stomach and proximal duodenum are well understood, and this injury can largely be prevented through suppression of gastric acid secretion (mainly with proton pump inhibitors). In contrast, the pathogenesis of small intestinal injury induced by NSAIDs is less well understood, involving more complex mechanisms than those in the stomach and proximal duodenum. There is clear evidence for important contributions to NSAID enteropathy of enteric bacteria, bile and enterohepatic recirculation of the NSAID. There is no evidence that suppression of gastric acid secretion will reduce the incidence or severity of NSAID enteropathy. Indeed, clinical data suggest little, if any, benefit. Animal studies suggest a significant exacerbation of NSAID enteropathy when proton pump inhibitors are co‐administered with the NSAID. This worsening of damage appears to be linked to changes in the number and types of bacteria in the small intestine during proton pump inhibitor therapy. The distinct mechanisms of NSAID‐induced injury in the stomach/proximal duodenum versus the more distal small intestine likely dictate distinct strategies for prevention.


Digestive and Liver Disease | 2010

Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract

Gary R. Martin; G. Webb McKnight; Michael Dicay; Carla S. Coffin; Jose G. P. Ferraz; John L. Wallace

AIMS Hydrogen sulphide (H2S) exerts several anti-inflammatory effects, accelerates the healing of experimental gastric ulcers, and can stimulate intestinal secretion. Little is known about H2S synthesis in the gastrointestinal tract. The aim of this study was to characterize H2S synthesis throughout the gastrointestinal tract. METHODS H2S synthesis in various gastrointestinal tissues of rats and mice was determined. The effects and selectivity of inhibitors of two key enzymes for H2S synthesis, cystathionine-gamma-lyase and cystathionine-beta-synthase, were examined. Cystathionine-gamma-lyase and cystathionine-beta-synthase expression was evaluated by Western blotting and immunohistochemistry. Cystathionine-gamma-lyase and cystathionine-beta-synthase expression in biopsies of human colon was also examined. RESULTS H2S synthesis was variable throughout the gastrointestinal tract in parallel with variations in cystathionine-gamma-lyase and cystathionine-beta-synthase expression. The efficacy of cystathionine-beta-synthase and cystathionine-gamma-lyase inhibitors to reduce H2S synthesis in these tissues was also variable. Cystathionine-beta-synthase is the predominant source of H2S synthesis in the colon of rodents. Cystathionine-gamma-lyase and cystathionine-beta-synthase were also expressed in healthy human colon biopsies. CONCLUSIONS The capacity for H2S synthesis varies throughout the rodent gastrointestinal tract, as does the distribution and contribution of the two key enzymes. Investigation of additional enzymatic sources of H2S and the development of more selective inhibitors are suggested.


PLOS ONE | 2012

Gastrointestinal-Sparing Effects of Novel NSAIDs in Rats with Compromised Mucosal Defence

Rory W. Blackler; Stephanie D. Syer; Manlio Bolla; Ennio Ongini; John L. Wallace

Nonsteroidal anti-inflammatory drugs are among the most commonly used prescription and over-the-counter medications, but they often produce significant gastrointestinal ulceration and bleeding, particularly in elderly patients and patients with certain co-morbidities. Novel anti-inflammatory drugs are seldom tested in animal models that mimic the high risk human users, leading to an underestimate of the true toxicity of the drugs. In the present study we examined the effects of two novel NSAIDs and two commonly used NSAIDs in models in which mucosal defence was expected to be impaired. Naproxen, celecoxib, ATB-346 (a hydrogen sulfide- and naproxen-releasing compound) and NCX 429 (a nitric oxide- and naproxen-releasing compound) were evaluated in healthy, arthritic, obese, and hypertensive rats and in rats of advanced age (19 months) and rats co-administered low-dose aspirin and/or omeprazole. In all models except hypertension, greater gastric and/or intestinal damage was observed when naproxen was administered in these models than in healthy rats. Celecoxib-induced damage was significantly increased when co-administered with low-dose aspirin and/or omeprazole. In contrast, ATB-346 and NCX 429, when tested at doses that were as effective as naproxen and celecoxib in reducing inflammation and inhibiting cyclooxygenase activity, did not produce significant gastric or intestinal damage in any of the models. These results demonstrate that animal models of human co-morbidities display the same increased susceptibility to NSAID-induced gastrointestinal damage as observed in humans. Moreover, two novel NSAIDs that release mediators of mucosal defence (hydrogen sulfide and nitric oxide) do not induce significant gastrointestinal damage in these models of impaired mucosal defence.


British Journal of Pharmacology | 2010

Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat.

E. Ekundi-Valentim; Karen T. dos Santos; Enilton A. Camargo; Alexandre Denadai-Souza; Simone A. Teixeira; C. I. Zanoni; Andrew D. Grant; John L. Wallace; Marcelo N. Muscará; Soraia K.P. Costa

Background and purpose:  Recent findings suggest that the noxious gas H2S is produced endogenously, and that physiological concentrations of H2S are able to modulate pain and inflammation in rodents. This study was undertaken to evaluate the ability of endogenous and exogenous H2S to modulate carrageenan‐induced synovitis in the rat knee.


Trends in Pharmacological Sciences | 2009

Cyclooxygenase-inhibiting nitric oxide donators for osteoarthritis.

John L. Wallace; Serena Viappiani; Manlio Bolla

Nonsteroidal anti-inflammatory drugs (NSAIDs) remain the most commonly used medications for the treatment of the symptoms of many chronic inflammatory diseases, including osteoarthritis. Unfortunately, the toxicity of NSAIDs substantially limits their long-term use. Some newer NSAIDs, namely selective cyclooxygenase (COX)-2 inhibitors, exhibit greater gastrointestinal safety, and concomitant use of anti-secretory drugs can also reduce NSAID-induced gastropathy. However, NSAIDs also adversely affect the cardiovascular system. A new class of anti-inflammatory drugs, COX-inhibiting nitric oxide donators (CINODs), has been designed to exert similar anti-inflammatory effects as NSAIDs, but with an improved safety profile. CINODs release nitric oxide, providing protective effects in the gastrointestinal tract and attenuating the detrimental effects on blood pressure normally associated with NSAIDs. We provide an outline of the rationale for CINODs and their activity, in addition to an overview of the pre-clinical and clinical profile of the most advanced CINOD, naproxcinod.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

HYDROGEN SULFIDE-BASED THERAPEUTICS AND GASTROINTESTINAL DISEASES: TRANSLATING PHYSIOLOGY TO TREATMENTS

Melissa V. Chan; John L. Wallace

Hydrogen sulfide (H2S) is a gaseous meditator that has various physiological and pathophysiological roles in the body. It has been shown to be an important mediator of gastrointestinal (GI) mucosal defense and contributes significantly to repair of damage and resolution of inflammation. Synthesis of H2S increases markedly after mucosal injury, and inhibition of H2S in such circumstances leads to delayed healing and exacerbated inflammation. The beneficial effects of H2S may be attributable to its ability to elevate mucosal blood flow, prevent leukocyte-endothelial adhesion, reduce oxidative stress, and stimulate angiogenesis. The use of H2S-donating agents and inhibitors of the key enzymes contributing to H2S synthesis have provided strong evidence for the importance of H2S in enhancing mucosal resistance to damage, as well as modulating inflammation and repair. In recent years, significant evidence has been generated to support the notion that these positive aspects of H2S can be exploited in drug design, particularly for arthritis, inflammatory bowel disease, and colon cancer chemoprevention. Thus novel H2S-based therapies have been shown to be effective anti-inflammatories that can promote the resolution of inflammation and accelerate the healing of GI ulcers. Encouraging results have already been seen experimentally with a mesalamine derivative and with H2S-releasing derivatives of nonsteroidal anti-inflammatory drugs.


British Journal of Pharmacology | 2015

Interactions of hydrogen sulfide with myeloperoxidase

Zoltán Pálinkás; Paul G. Furtmüller; Attila Nagy; Christa Jakopitsch; Katharina F. Pirker; Marcin Magierowski; Katarzyna Jasnos; John L. Wallace; Christian Obinger; Peter I. Nagy

The actions of hydrogen sulfide in human physiology have been extensively studied and, although it is an essential mediator of many biological functions, the underlying molecular mechanisms of its actions are ill‐defined. To elucidate the roles of sulfide in inflammation, we have investigated its interactions with human myeloperoxidase (MPO), a major contributor to inflammatory oxidative stress.


PLOS ONE | 2012

Up-regulation of Annexin-A1 and lipoxin A(4) in individuals with ulcerative colitis may promote mucosal homeostasis.

Linda Vong; Jose G. P. Ferraz; Neil Dufton; Remo Panaccione; Paul L. Beck; Philip M. Sherman; Mauro Perretti; John L. Wallace

Background One of the characteristics of an active episode of ulcerative colitis (UC) is the intense mucosal infiltration of leukocytes. The pro-resolution mediators Annexin-A1 (AnxA1) and lipoxin A4 (LXA4) exert counter-regulatory effects on leukocyte recruitment, however to date, the dual/cumulative effects of these formyl peptide receptor-2 (FPR2/ALX) agonists in the context of human intestinal diseases are unclear. To define the contribution of these mediators, we measured their expression in biopsies from individuals with UC. Methods Colonic mucosal biopsies were collected from two broad patient groups: healthy volunteers without (‘Ctrl’ n = 20) or with a prior history of UC (‘hx of UC’ n = 5); individuals with UC experiencing active disease (‘active’ n = 8), or in medically-induced remission (‘remission’ n = 16). We assessed the mucosal expression of LXA4, AnxA1, and the FPR2/ALX receptor in each patient group using a combination of fluorescence microscopy, biochemical and molecular analyses. Results Mucosal expression of LXA4 was elevated exclusively in biopsies from individuals in remission (3-fold, P<0.05 vs. Ctrl). Moreover, in this same group we observed an upregulation of AnxA1 protein expression (2.5-fold increase vs. Ctrl, P<.01), concurrent with an increased level of macrophage infiltration, and an elevation in FPR2/ALX mRNA (7-fold increase vs. Ctrl, P<.05). Importantly, AnxA1 expression was not limited to cells infiltrating the lamina propria but was also detected in epithelial cells lining the intestinal crypts. Conclusions Our results demonstrate a specific up-regulation of this pro-resolution circuit in individuals in remission from UC, and suggest a significant role for LXA4 and AnxA1 in promoting mucosal homeostasis.

Collaboration


Dive into the John L. Wallace's collaboration.

Top Co-Authors

Avatar

Giuseppe Cirino

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Caliendo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Santagada

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge