Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John L. Williams is active.

Publication


Featured researches published by John L. Williams.


BMC Genetics | 2007

Whole genome linkage disequilibrium maps in cattle

Stephanie D. McKay; Robert D. Schnabel; B. Murdoch; Lakshmi K. Matukumalli; Jan Aerts; Wouter Coppieters; Denny Crews; Emmanuel Dias Neto; C. A. Gill; Chuan Gao; Hideyuki Mannen; Paul Stothard; Z. Wang; Curt P. Van Tassell; John L. Williams; Jeremy F. Taylor; Stephen S. Moore

BackgroundBovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle.ResultsLinkage disequilibrium was assessed using r2 among all pairs of syntenic markers within eight breeds of cattle from the Bos taurus and Bos indicus subspecies. Bos taurus breeds included Angus, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while Bos indicus breeds included Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were used to estimate pairwise r2 values. We found that the extent of linkage disequilibrium is no more than 0.5 Mb in these eight breeds of cattle.ConclusionLinkage disequilibrium in cattle has previously been reported to extend several tens of centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings suggest that 30,000–50,000 loci will be needed to conduct whole genome association studies in cattle.


Mammalian Genome | 2002

A bovine whole-genome radiation hybrid panel and outline map

John L. Williams; A. Eggen; L. Ferretti; Christine J. Farr; Mathieu Gautier; Giuseppe Amati; Glynn Ball; Tiziana Caramorr; Ricky Critcher; Sandro Costa; Patrick Hextall; David Hills; Aurore Jeulin; Susanna L. Kiguwa; Olivia Ross; Angela L. Smith; Katiana Saunier; Barbara Urquhart; Dave Waddington

A 3000-rad radiation hybrid panel was constructed for cattle and used to build outline RH maps for all 29 autosomes and the X and Y chromosomes. These outline maps contain about 1200 markers, most of which are anonymous microsatellite loci. Comparisons between the RH chromosome maps, other published RH maps, and linkage maps allow regions of chromosomes that are poorly mapped or that have sparse marker coverage to be identified. In some cases, mapping ambiguities can be resolved. The RH maps presented here are the starting point for mapping additional loci, in particular genes and ESTs that will allow detailed comparative maps between cattle and other species to be constructed. Radiation hybrid cell panels allow high-density genetic maps to be constructed, with the advantage over linkage mapping that markers do not need to be polymorphic. A large quantity of DNA has been prepared from the cells forming the RH panel reported here and is publicly available for mapping large numbers of loci.


BMC Biology | 2006

A major genetic component of BSE susceptibility

Katrin Juling; Hermann Schwarzenbacher; John L. Williams; R. Fries

BackgroundCoding variants of the prion protein gene (PRNP) have been shown to be major determinants for the susceptibility to transmitted prion diseases in humans, mice and sheep. However, to date, the effects of polymorphisms in the coding and regulatory regions of bovine PRNP on bovine spongiform encephalopathy (BSE) susceptibility have been considered marginal or non-existent. Here we analysed two insertion/deletion (indel) polymorphisms in the regulatory region of bovine PRNP in BSE affected animals and controls of four independent cattle populations from UK and Germany.ResultsIn the present report, we show that two previously reported 23- and 12-bp insertion/deletion (indel) polymorphisms in the regulatory region of bovine PRNP are strongly associated with BSE incidence in cattle. Genotyping of BSE-affected and control animals of UK Holstein, German Holstein, German Brown and German Fleckvieh breeds revealed a significant overrepresentation of the deletion alleles at both polymorphic sites in diseased animals (P = 2.01 × 10-3 and P = 8.66 × 10-5, respectively). The main effect on susceptibility is associated with the 12-bp indel polymorphism. Compared with non-carriers, heterozygous and homozygous carriers of the 12-bp deletion allele possess relatively higher risks of having BSE, ranging from 1.32 to 4.01 and 1.74 to 3.65 in the different breeds. These values correspond to population attributable risks ranging from 35% to 53%.ConclusionOur results demonstrate a substantial genetic PRNP associated component for BSE susceptibility in cattle. Although the BSE risk conferred by the deletion allele of the 12-bp indel in the regulatory region of PRNP is substantial, the main risk factor for BSE in cattle is environmental, i.e. exposure to feedstuffs contaminated with the infectious agent.


Meat Science | 2011

Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds.

Mette Christensen; Per Ertbjerg; Sebastiana Failla; C. Sañudo; R. Ian Richardson; Geoff R. Nute; J.L. Olleta; B. Panea; P. Albertí; M. Juárez; Jean-François Hocquette; John L. Williams

Variations in texture were determined for 10 day aged raw and cooked Longissimus thoracis (LT) muscle from 436 bulls of 15 European cattle breeds slaughtered at an age of 13-16 months. Variations in texture were related to differences in pH 24 h post-mortem, sarcomere length, collagen characteristics and lipid content. The shear force of cooked meat samples varied from 43.8 to 67.4 N/cm². Simmental, Highland and Marchigiana cattle had the highest shear force values and Avileña-Negra Ibérica, Charolais, Casina and Pirenaica cattle had the lowest values. Cooked meat toughness showed a weak negative correlation to lipid content (P<0.001) but no correlation to collagen characteristics. Raw meat texture measured by compression correlated positively (P<0.001) with total and insoluble collagen. In conclusion, collagen characteristics showed correlation to raw meat texture but not to cooked meat toughness of LT muscle in European young bulls.


Genetics Selection Evolution | 2003

Haplotype diversity of the myostatin gene among beef cattle breeds

S. Dunner; M. Eugenia Miranda; Yves Amigues; Javier Cañón; Michel Georges; R Hanset; John L. Williams; François Ménissier

A total of 678 individuals from 28 European bovine breeds were both phenotyped and analysed at the myostatin locus by the Single Strand Conformation Polymorphism (SSCP) method. Seven new mutations were identified which contribute to the high polymorphism (1 SNP every 100 bp) present in this small gene; twenty haplotypes were described and a genotyping method was set up using the Oligonucleotide Ligation Assay (OLA) method. Some haplotypes appeared to be exclusive to a particular breed; this was the case for 5 in the Charolaise (involving mutation Q204X) and 7 in the Maine-Anjou (involving mutation E226X). The relationships between the different haplotypes were studied, thus allowing to test the earlier hypothesis on the origin of muscular hypertrophy in Europe: muscular hypertrophy (namely nt821(del11)) was mainly spread in different waves from northern Europe milk purpose populations in most breeds; however, other mutations (mostly disruptive) arose in a single breed, were highly selected and have since scarcely evolved to other populations.


European Journal of Immunology | 2003

Natural killer cell receptors in cattle: a bovine killer cell immunoglobulin-like receptor multigene family contains members with divergent signaling motifs

Anne K. Storset; Imer Ö. Slettedal; John L. Williams; A. Law; Erik Dissen

Natural killer (NK) cells recognize and kill certain tumor cells, virally infected cells and MHC class I‐disparate normal hematopoietic cells. NK cell cytotoxicity is regulated by a multitude of receptors with either activating or inhibitory signaling function. We here report the molecular cloning of bovine CD94 [killer cell lectin‐like receptor (KLR)‐D1] and NKp46 orthologues, four members of a bovine CD158 [killer cell immunoglobulin‐like receptor (KIR)] family, and a novel KLR. This novel receptor was termed KLRJ1 and is most similar to Ly‐49 (KLRA). The KLRD1 and KLRJ1 loci were mapped to a bovine NK gene complex on chromosome 5 by radiation hybrid mapping, whereas KIR2DL1 and NKP46 were localized to chromosome 18. Two of the bovine KIR(KIR2DL1 and KIR3DL1) contain immunoreceptor tyrosine‐based inhibition motifs (ITIM), suggesting an inhibitory function. Bovine KIR2DS1 and KIR3DS1 lack ITIM but have an arginine‐containing motif in their transmembrane domain, similar to primate KIR2DL4. Thus, KIR multigene families with divergent signaling motifs do not only exist in primates. Based on sequence comparison, it appears that the primate and bovine KIR multigene families may have evolved independently.


BMC Genetics | 2008

An assessment of population structure in eight breeds of cattle using a whole genome SNP panel

Stephanie D. McKay; Robert D. Schnabel; B. Murdoch; Lakshmi K. Matukumalli; Jan Aerts; Wouter Coppieters; Denny Crews; Emmanuel Dias Neto; C. A. Gill; Chuan Gao; Hideyuki Mannen; Z. Wang; Curt P. Van Tassell; John L. Williams; Jeremy F. Taylor; Stephen S. Moore

BackgroundAnalyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from Bos indicus and Bos taurus.ResultsTwo thousand six hundred and forty one single nucleotide polymorphisms (SNPs) spanning all of the bovine autosomal genome were genotyped in Angus, Brahman, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black, Limousin and Nelore cattle. Population structure was examined using the linkage model in the program STRUCTURE and Fst estimates were used to construct a neighbor-joining tree to represent the phylogenetic relationship among these breeds.ConclusionThe whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. The greatest level of genetic differentiation was detected between the Bos taurus and Bos indicus breeds. When the Bos indicus breeds were excluded from the analysis, genetic differences among beef versus dairy and European versus Asian breeds were detected among the Bos taurus breeds. Exploration of the number of SNP loci required to differentiate between breeds showed that for 100 SNP loci, individuals could only be correctly clustered into breeds 50% of the time, thus a large number of SNP markers are required to replace the 30 microsatellite markers that are currently commonly used in genetic diversity studies.


Animal Genetics | 2012

Molecular tools and analytical approaches for the characterization of farm animal genetic diversity

Johannes A. Lenstra; Linn F. Groeneveld; Herwin Eding; Juha Kantanen; John L. Williams; Pierre Taberlet; Ezequiel L. Nicolazzi; Johann Sölkner; Henner Simianer; E. Ciani; José Fernando Garcia; Michael William Bruford; Paolo Ajmone-Marsan; Steffen Weigend

Genetic studies of livestock populations focus on questions of domestication, within- and among-breed diversity, breed history and adaptive variation. In this review, we describe the use of different molecular markers and methods for data analysis used to address these questions. There is a clear trend towards the use of single nucleotide polymorphisms and whole-genome sequence information, the application of Bayesian or Approximate Bayesian analysis and the use of adaptive next to neutral diversity to support decisions on conservation.


Genome Biology | 2007

A physical map of the bovine genome

Warren M Snelling; Readman Chiu; Jacqueline E. Schein; Matthew Hobbs; Colette A. Abbey; David L. Adelson; Jan Aerts; Gary L Bennett; Ian Bosdet; Mekki Boussaha; Rudiger Brauning; Alexandre R Caetano; Marcos M Costa; A. M. Crawford; Brian P. Dalrymple; A. Eggen; Annelie Everts-van der Wind; Sandrine Floriot; Mathieu Gautier; C. A. Gill; Ronnie D Green; Robert A. Holt; Oliver Jann; Steven J.M. Jones; S. M. Kappes; J. W. Keele; Pieter J. de Jong; Denis M. Larkin; Harris A. Lewin; J. C. McEwan

BackgroundCattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing project.ResultsA bovine BAC map was constructed with HindIII restriction digest fragments of 290,797 BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two genetic maps and marker scores from three whole-genome RH panels were consolidated on a 17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high, although discrepancies exist. The composite and BAC maps are more similar than either is to the draft assembly.ConclusionFurther refinement of the maps and greater integration into the genome assembly process may contribute to a high quality assembly. The maps provide resources to associate phenotypic variation with underlying genomic variation, and are crucial resources for understanding the biology underpinning this important ruminant species so closely associated with humans.


Genetics Selection Evolution | 2009

Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle

J. L. Gill; Stephen Bishop; Caroline McCorquodale; John L. Williams; Pamela Wiener

BackgroundThe purpose of this study was to evaluate the effects of eight single nucleotide polymorphisms (SNP), previously associated with meat and milk quality traits in cattle, in a population of 443 commercial Aberdeen Angus-cross beef cattle. The eight SNP, which were located within five genes: μ-calpain (CAPN1), calpastatin (CAST), leptin (LEP), growth hormone receptor (GHR) and acylCoA:diacylglycerol acyltransferase 1 (DGAT1), are included in various commercial tests for tenderness, fatness, carcass composition and milk yield/quality.MethodsA total of 27 traits were examined, 19 relating to carcass quality, such as carcass weight and fatness, one mechanical measure of tenderness, and the remaining seven were sensory traits, such as flavour and tenderness, assessed by a taste panel.ResultsAn SNP in the CAPN1 gene, CAPN316, was significantly associated with tenderness measured by both the tenderometer and the taste panel as well as the weight of the hindquarter, where animals inheriting the CC genotype had more tender meat and heavier hindquarters. An SNP in the leptin gene, UASMS2, significantly affected overall liking, where animals with the TT genotype were assigned higher scores by the panellists. The SNP in the GHR gene was significantly associated with odour, where animals inheriting the AA genotype produced steaks with an intense odour when compared with the other genotypes. Finally, the SNP in the DGAT1 gene was associated with sirloin weight after maturation and fat depth surrounding the sirloin, with animals inheriting the AA genotype having heavier sirloins and more fat.ConclusionThe results of this study confirm some previously documented associations. Furthermore, novel associations have been identified which, following validation in other populations, could be incorporated into breeding programmes to improve meat quality.

Collaboration


Dive into the John L. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Ajmone-Marsan

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Dunner

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge