Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Le Quesne is active.

Publication


Featured researches published by John Le Quesne.


Oncogene | 1998

C-Myc 5' untranslated region contains an internal ribosome entry segment

Mark Stoneley; Fiona Em Paulin; John Le Quesne; Stephen A. Chappell; Anne E. Willis

Translation in eukaryotic cells is generally initiated by ribosome scanning from the 5′ end of the capped mRNA. However, initiation of translation may also occur by a mechanism which is independent of the cap structure and in this case ribosomes are directed to the start codon by an internal ribosome entry segment (IRES). Picornaviruses represent the paradigm for this mechanism, but only a few examples exist which show that this mechanism is used by eukaryotic cells. In this report we show data which demonstrate that the 5′ UTR of the proto-oncogene c-myc contains an IRES. When a dicistronic reporter vector, with c-myc 5′ UTR inserted between the two cistrons, was transfected into both HepG2 and HeLa cells, the translation of the downstream cistron was increased by 50-fold, demonstrating that translational regulation of c-myc is mediated through cap-independent mechanisms. This is the first example of a proto-oncogene regulated in this manner and suggests that aberrant translational regulation of c-myc is likely to play a role in tumorigenesis.


The New England Journal of Medicine | 2017

Tracking the Evolution of Non–Small-Cell Lung Cancer

Mariam Jamal-Hanjani; Gareth A. Wilson; Nicholas McGranahan; Nicolai Juul Birkbak; Thomas B.K. Watkins; Selvaraju Veeriah; Seema Shafi; Diana Johnson; Richard Mitter; Rachel Rosenthal; Max Salm; Stuart Horswell; Mickael Escudero; Nik Matthews; Andrew Rowan; Tim Chambers; David Moore; Samra Turajlic; Hang Xu; Siow Ming Lee; Martin Forster; Tanya Ahmad; Crispin Hiley; Christopher Abbosh; Mary Falzon; Elaine Borg; Teresa Marafioti; David Lawrence; Martin Hayward; Shyam Kolvekar

BACKGROUND Among patients with non‐small‐cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early‐stage NSCLC. METHODS In this prospective cohort study, we performed multiregion whole‐exome sequencing on 100 early‐stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence‐free survival. RESULTS We observed widespread intratumor heterogeneity for both somatic copy‐number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution were found in more than 75% of the tumors and were common in PIK3CA and NF1 and in genes that are involved in chromatin modification and DNA damage response and repair. Genome doubling and ongoing dynamic chromosomal instability were associated with intratumor heterogeneity and resulted in parallel evolution of driver somatic copy‐number alterations, including amplifications in CDK4, FOXA1, and BCL11A. Elevated copy‐number heterogeneity was associated with an increased risk of recurrence or death (hazard ratio, 4.9; P=4.4×10‐4), which remained significant in multivariate analysis. CONCLUSIONS Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601.)


PLOS Biology | 2014

Tracking genomic cancer evolution for precision medicine: the lung TRACERx study.

Mariam Jamal-Hanjani; Alan Hackshaw; Yenting Ngai; Jacqueline A. Shaw; Caroline Dive; Sergio A. Quezada; Gary Middleton; Elza C de Bruin; John Le Quesne; Seema Shafi; Mary Falzon; Stuart Horswell; Fiona Blackhall; Iftekhar Khan; Sam M. Janes; Marianne Nicolson; David S. Lawrence; Martin Forster; Dean A. Fennell; Siow Ming Lee; J.F. Lester; Keith M. Kerr; Salli Muller; Natasha Iles; Sean Smith; Nirupa Murugaesu; Richard Mitter; Max Salm; Aengus Stuart; Nik Matthews

TRACERx, a prospective study of patients with primary non-small cell lung cancer, aims to map the genomic landscape of lung cancer by tracking clonal heterogeneity and tumour evolution from diagnosis to relapse.


The Journal of Pathology | 2009

Dysregulation of protein synthesis and disease.

John Le Quesne; Keith A. Spriggs; Martin Bushell; Anne E. Willis

The regulation of protein synthesis plays as important a role as transcriptional control in the control of gene expression. Once thought solely to act globally, translational control has now been shown to be able to control the expression of most genes specifically. Dysregulation of this process is associated with a range of pathological conditions, notably cancer and several neurological disorders, and can occur in many ways. These include alterations in the expression of canonical initiation factors, mutations in regulatory mRNA sequence elements in 5′ and 3′ untranslated regions (UTRs), such as upstream open reading frames (uORFs), internal ribosome entry segments (IRESs) and micro‐RNA (miR) target sites, and the altered expression of trans‐acting protein factors that bind to and regulate these elements. Translational control is increasingly open for study in both fresh and fixed tissue, and this rapidly developing field is yielding useful diagnostic and prognostic tools that will hopefully provide new targets for effective treatments. Copyright


Nature Communications | 2012

TGFβ induces the formation of tumour-initiating cells in claudinlow breast cancer

Alejandra Bruna; Wendy Greenwood; John Le Quesne; Andrew E. Teschendorff; Diego Miranda-Saavedra; Oscar M. Rueda; Jose L. Sandoval; Ana Tufegdzic Vidakovic; Amel Saadi; Paul Pharoah; John Stingl; Carlos Caldas

The role of transforming growth factor-beta (TGFβ) in the progression of different molecular subtypes of breast cancer has not been clarified. Here we show that TGFβ increases breast tumour-initiating cell (BTIC) numbers but only in claudin(low) breast cancer cell lines by orchestrating a specific gene signature enriched in stem cell processes that predicts worse clinical outcome in breast cancer patients. NEDD9, a member of the Cas family of integrin scaffold proteins, is necessary to mediate these TGFβ-specific effects through a positive feedback loop that integrates TGFβ/Smad and Rho-actin-SRF-dependent signals. In normal human mammary epithelium, TGFβ induces progenitor activity only in the basal/stem cell compartment, where claudin(low) cancers are presumed to arise. These data show opposing responses to TGFβ in both breast malignant cell subtypes and normal mammary epithelial cell subpopulations and suggest therapeutic strategies for a subset of human breast cancers.


The Lancet | 2016

Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease

Crispin Hiley; John Le Quesne; George Santis; Rowena Sharpe; David Gonzalez de Castro; Gary Middleton; Charles Swanton

Lung cancer diagnostics have progressed greatly in the previous decade. Development of molecular testing to identify an increasing number of potentially clinically actionable genetic variants, using smaller samples obtained via minimally invasive techniques, is a huge challenge. Tumour heterogeneity and cancer evolution in response to therapy means that repeat biopsies or circulating biomarkers are likely to be increasingly useful to adapt treatment as resistance develops. We highlight some of the current challenges faced in clinical practice for molecular testing of EGFR, ALK, and new biomarkers such as PDL1. Implementation of next generation sequencing platforms for molecular diagnostics in non-small-cell lung cancer is increasingly common, allowing testing of multiple genetic variants from a single sample. The use of next generation sequencing to recruit for molecularly stratified clinical trials is discussed in the context of the UK Stratified Medicine Programme and The UK National Lung Matrix Trial.


Journal of Thoracic Oncology | 2014

A Comparison of Immunohistochemical Assays and FISH in Detecting the ALK Translocation in Diagnostic Histological and Cytological Lung Tumor Material

John Le Quesne; Manisha Maurya; Slaveya Yancheva; Mary O’Brien; Sanjay Popat; Andrew Wotherspoon; David Gonzalez de Castro; Andrew G. Nicholson

Introduction: Detection of the ALK rearrangement in a solid tumor gives these patients the option of crizotinib as an oral form of anticancer treatment. The current test of choice is fluorescence in situ hybridization (FISH), but various cheaper and more convenient immunohistochemical (IHC) assays have been proposed as alternatives. Methods: Fifteen FISH-positive cases from patients, seven with data on crizotinib therapy and clinical response, were evaluated for the presence of ALK protein using three different commercially available antibodies: D5F3, using the proprietary automated system (Ventana), ALK1 (Dako), and 5A4 (Abcam). A further 14 FISH-negative and three uncertain (<15% rearrangement detected) cases were also retrieved. Of the total 32 specimens, 17 were excisions and 15 were computed tomography-guided biopsies or cytological specimens. All three antibodies were applied to all cases. Antibodies were semiquantitatively scored on intensity, and the proportion of malignant cells stained was documented. Cutoffs were set by receiver operating curve analysis for positivity to optimize correct classification. Results: All three IHC assays were 100% specific but sensitivity did vary: D5F3 86%, ALK 79%, 5A4 71%. Intensity was the most discriminating measure overall, with a combination of proportion and intensity not improving the test. No FISH-negative IHC-positive cases were seen. Two FISH-positive cases were negative with all three IHC assays. One of these had been treated with crizotinib and had failed to show clinical response. The other harbored a second driving mutation in the EGFR gene. Conclusions: IHC with all three antibodies is especially highly specific (100%) although variably sensitive (71%-86%), specifically in cases with scanty material. D5F3 assay was most sensitive in these latter cases. Occasional cases are IHC-positive but FISH-negative, suggesting either inaccuracy of one assay or occasional tumors with ALK rearrangement that do not express high levels of ALK protein.


Cancer Research | 2017

Ex vivo explant cultures of non-small cell lung carcinoma enable evaluation of primary tumor responses to anticancer therapy

Ellie Karekla; Wen-Jing Liao; Barry L. Sharp; John Pugh; Helen J. Reid; John Le Quesne; David Moore; Catrin Pritchard; Marion MacFarlane; James Howard Pringle

To improve treatment outcomes in non-small cell lung cancer (NSCLC), preclinical models that can better predict individual patient response to novel therapies are urgently needed. Using freshly resected tumor tissue, we describe an optimized ex vivo explant culture model that enables concurrent evaluation of NSCLC response to therapy while maintaining the tumor microenvironment. We found that approximately 70% of primary NSCLC specimens were amenable to explant culture with tissue integrity intact for up to 72 hours. Variations in cisplatin sensitivity were noted with approximately 50% of cases responding ex vivo Notably, explant responses to cisplatin correlated significantly with patient survival (P = 0.006) irrespective of tumor stage. In explant tissue, cisplatin-resistant tumors excluded platinum ions from tumor areas in contrast to cisplatin-sensitive tumors. Intact TP53 did not predict cisplatin sensitivity, but a positive correlation was observed between cisplatin sensitivity and TP53 mutation status (P = 0.003). Treatment of NSCLC explants with the targeted agent TRAIL revealed differential sensitivity with the majority of tumors resistant to single-agent or cisplatin combination therapy. Overall, our results validated a rapid, reproducible, and low-cost platform for assessing drug responses in patient tumors ex vivo, thereby enabling preclinical testing of novel drugs and helping stratify patients using biomarker evaluation. Cancer Res; 77(8); 2029-39. ©2017 AACR.


Science Translational Medicine | 2018

The ERBB network facilitates KRAS-driven lung tumorigenesis

Björn Kruspig; Tiziana Monteverde; Sarah Neidler; A Hock; Emma M. Kerr; Colin Nixon; William Clark; Ann Hedley; Sarah Laing; Seth B. Coffelt; John Le Quesne; Craig Dick; Karen H. Vousden; Carla P. Martins; Daniel J. Murphy

G12 mutant KRAS requires tonic ERBB network activity for initiation and maintenance of lung cancer. A new role for kinase inhibitors The KRAS oncogene is frequently mutated in a variety of cancer types, including lung cancer. Lung cancers with KRAS mutations are usually difficult to target, and conventional thinking dictates that these tumors are resistant to receptor tyrosine kinase inhibitors because those act upstream of the constitutively active KRAS protein. However, it appears that receptor tyrosine kinase signaling may have an effect on KRAS-driven lung tumors after all, by amplifying their growth beyond the effects of KRAS alone. Kruspig et al. and Moll et al. independently reached this conclusion and identified approved multi-kinase inhibitors that are effective in the setting of KRAS-mutant lung cancer in multiple mouse models, suggesting that this may be a potential treatment strategy for human patients as well. KRAS is the most frequently mutated driver oncogene in human adenocarcinoma of the lung. There are presently no clinically proven strategies for treatment of KRAS-driven lung cancer. Activating mutations in KRAS are thought to confer independence from upstream signaling; however, recent data suggest that this independence may not be absolute. We show that initiation and progression of KRAS-driven lung tumors require input from ERBB family receptor tyrosine kinases (RTKs): Multiple ERBB RTKs are expressed and active from the earliest stages of KRAS-driven lung tumor development, and treatment with a multi-ERBB inhibitor suppresses formation of KRASG12D-driven lung tumors. We present evidence that ERBB activity amplifies signaling through the core RAS pathway, supporting proliferation of KRAS-mutant tumor cells in culture and progression to invasive disease in vivo. Brief pharmacological inhibition of the ERBB network enhances the therapeutic benefit of MEK (mitogen-activated protein kinase kinase) inhibition in an autochthonous tumor setting. Our data suggest that lung cancer patients with KRAS-driven disease may benefit from inclusion of multi-ERBB inhibitors in rationally designed treatment strategies.


Nucleic Acids Research | 2018

eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes

Joseph Waldron; Farheen Raza; John Le Quesne

Abstract Increased activity of the mRNA helicase eIF4A drives cellular malignancy by reprogramming cellular translation, and eIF4A activity is the direct or indirect target of many emerging cancer therapeutics. The enriched presence of (GGC)4 motifs, which have the potential to fold into two-layered G-quadruplexes, within the 5′UTRs of eIF4A-dependent mRNAs suggests that eIF4A is required for the unwinding of these structures within these eIF4A-controlled mRNAs. However, the existence of folded G-quadruplexes within cells remains controversial, and G-quadruplex folding is in direct competition with classical Watson–Crick based secondary structures. Using a combination of reverse transcription stalling assays and 7-deazaguanine incorporation experiments we find that (GGC)4 motifs preferentially form classical secondary structures rather than G-quadruplexes in full-length mRNAs. Furthermore, using translation assays with the eIF4A inhibitor hippuristanol, both in vitro and in cells, we find that eIF4A activity alleviates translational repression of mRNAs with 5′UTR classical secondary structures significantly more than those with folded G-quadruplexes. This was particularly evident in experiments using a G-quadruplex stabilizing ligand, where shifting the structural equilibrium in favour of G-quadruplex formation diminishes eIF4A-dependency. This suggests that enrichment of (GGC)4 motifs in the 5′UTRs of eIF4A-dependent mRNAs is due to the formation of stable hairpin structures rather than G-quadruplexes.

Collaboration


Dive into the John Le Quesne's collaboration.

Top Co-Authors

Avatar

Anne E. Willis

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

David Moore

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farheen Raza

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge