Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Litchfield is active.

Publication


Featured researches published by John Litchfield.


Journal of Medicinal Chemistry | 2012

Discovery of (S)-6-(3-Cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic Acid as a Hepatoselective Glucokinase Activator Clinical Candidate for Treating Type 2 Diabetes Mellitus

Jeffrey A. Pfefferkorn; Angel Guzman-Perez; John Litchfield; Robert J. Aiello; Judith L. Treadway; John C. Pettersen; Martha L. Minich; Kevin J. Filipski; Christopher S. Jones; Meihua Tu; Gary E. Aspnes; Hud Risley; Jianwei Bian; Benjamin D. Stevens; Patricia Bourassa; Theresa D’Aquila; Levenia Baker; Nicole Barucci; Alan Robertson; Francis Bourbonais; David R. Derksen; Margit MacDougall; Over Cabrera; Jing Chen; Amanda Lee Lapworth; James A. Landro; William J. Zavadoski; Karen Atkinson; Nahor Haddish-Berhane; Beijing Tan

Glucokinase is a key regulator of glucose homeostasis, and small molecule allosteric activators of this enzyme represent a promising opportunity for the treatment of type 2 diabetes. Systemically acting glucokinase activators (liver and pancreas) have been reported to be efficacious but in many cases present hypoglycaemia risk due to activation of the enzyme at low glucose levels in the pancreas, leading to inappropriately excessive insulin secretion. It was therefore postulated that a liver selective activator may offer effective glycemic control with reduced hypoglycemia risk. Herein, we report structure-activity studies on a carboxylic acid containing series of glucokinase activators with preferential activity in hepatocytes versus pancreatic β-cells. These activators were designed to have low passive permeability thereby minimizing distribution into extrahepatic tissues; concurrently, they were also optimized as substrates for active liver uptake via members of the organic anion transporting polypeptide (OATP) family. These studies lead to the identification of 19 as a potent glucokinase activator with a greater than 50-fold liver-to-pancreas ratio of tissue distribution in rodent and non-rodent species. In preclinical diabetic animals, 19 was found to robustly lower fasting and postprandial glucose with no hypoglycemia, leading to its selection as a clinical development candidate for treating type 2 diabetes.


Current Drug Metabolism | 2010

Targeting Intestinal Transporters for Optimizing Oral Drug Absorption

Manthena V. Varma; Catherine M. Ambler; Mohammad Ullah; Charles J. Rotter; Hao Sun; John Litchfield; Katherine S. Fenner; Ayman El-Kattan

While the oral exposure continues to be the major focus, the chemical space of recent drug discovery is apparently trending towards more hydrophilic libraries, due to toxicity and drug-interactions issues usually reported with lipophilic drugs. This trend may bring in challenges in optimizing the membrane permeability and thus the oral absorption of new chemical entities. It is now apparent that the influx transporters such as peptide transporter 1 (PepT1), organic-anion transporting polypeptides (OATPs), monocarboxylate transporters (MCT1) facilitate, while efflux pumps (e.g. P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)) limit oral absorption of drugs. This review will focus on intestinal transporters that may be targeted to achieve optimal clinical oral plasma exposure for hydrophilic and polar drugs. The structure, mechanism, structure-activity relationships and the clinical examples on the functional role of these transporters in the drug absorption was discussed. Physicochemical properties, lipophilicity and hydrogen-bonding ability, show good correlation with transport activity for efflux pumps. Although several attempts were made to describe the structural requirements based on pharmacophore modeling, lack of crystal structure of transporters impeded identification of definite properties for transporter affinity and favorable transport activity. Furthermore, very few substrate drug datasets are currently available for the influx transporters to derive any clear relationships. Unfortunately, gaps also exist in the translation of in vitro end points to the clinical relevance of the transporter(s) involved. However, it may be qualitatively generalized that targeting intestinal transporters are relevant for drugs with high solubility and/or low passive permeability i.e. a class of compounds identified as Class III and Class IV according to the Biopharmaceutic Classification System (BCS) and the Biopharmaceutic Drug Disposition Classification System (BDDCS). A careful considerations to oral dose based on the transporter clearance (V(max)/K(m)) capacity is needed in targeting a particular transporter. For example, low affinity and high capacity uptake transporters such as PEPT1 and MCT1 may be targeted for high oral dose drugs.


Molecular Pharmaceutics | 2011

pH-Sensitive Interaction of HMG-CoA Reductase Inhibitors (Statins) with Organic Anion Transporting Polypeptide 2B1

Manthena V. Varma; Charles J. Rotter; Jonathan Chupka; Kevin M. Whalen; David B. Duignan; Bo Feng; John Litchfield; Theunis C. Goosen; Ayman El-Kattan

The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several statins due to their transporter affinity at acidic pH.


ACS Medicinal Chemistry Letters | 2011

Discovery of PF-04620110, a Potent, Selective, and Orally Bioavailable Inhibitor of DGAT-1.

Robert L. Dow; Jian-Cheng Li; Michael P. Pence; E. Michael Gibbs; Jennifer L. LaPerle; John Litchfield; David W. Piotrowski; Michael John Munchhof; Tara B. Manion; William J. Zavadoski; Gregory S. Walker; R. Kirk McPherson; Susan Tapley; Eliot Sugarman; Angel Guzman-Perez; Paul DaSilva-Jardine

Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final committed step in the biosynthesis of triglycerides. DGAT-1 knockout mice have been shown to be resistant to diet-induced obesity and have increased insulin sensitivity. Thus, inhibition of DGAT-1 may represent an attractive target for the treatment of obesity or type II diabetes. Herein, we report the discovery and characterization of a potent and selective DGAT-1 inhibitor PF-04620110 (3). Compound 3 inhibits DGAT-1 with an IC50 of 19 nM and shows high selectivity versus a broad panel of off-target pharmacologic end points. In vivo DGAT-1 inhibition has been demonstrated through reduction of plasma triglyceride levels in rodents at doses of ≥0.1 mg/kg following a lipid challenge. On the basis of this pharmacologic and pharmacokinetic profile, compound 3 has been advanced to human clinical studies.


Drug Metabolism and Disposition | 2012

Physicochemical Property Space of Hepatobiliary Transport and Computational Models for Predicting Rat Biliary Excretion

Manthena V. Varma; George Chang; Yurong Lai; Bo Feng; Ayman El-Kattan; John Litchfield; Theunis C. Goosen

Biliary excretion (BE) is a major elimination pathway, and its prediction is particularly important for optimization of systemic and/or target-site exposure of new molecular entities. The objective is to characterize the physicochemical space associated with hepatobiliary transport and rat BE and to develop in silico models. BE of 123 in-house compounds was obtained using the bile-duct cannulated rat model. Human and rat hepatic uptake transporters (hOATP1B1, hOATP1B3, hOATP2B1, and rOatp1b2) substrates (n = 183) were identified using transfected cells. Furthermore, the datasets were extended by adding BE of 163 compounds and 97 organic anion transporting polypeptide (OATP) substrates from the literature. Approximately 60% of compounds showing percentage of BE (%BE) ≥ 10 are anions, with mean BE of anions (36%) more than 3-fold higher than that of nonacids (11%). Compounds with %BE ≥ 10 are found to have high molecular mass, large polar surface area, more rotatable bonds, and high H-bond count, whereas the lipophilicity and passive membrane permeability are lower compared with compounds with %BE < 10. According to statistical analysis and principal component analysis, hOATPs and rOatp1b2 substrates showed physicochemical characteristics that were similar to those of the %BE ≥ 10 dataset. We further build categorical in silico models to predict rat BE, and the models (gradient boosting machine and scoring function) developed showed 80% predictability in identifying the rat BE bins (%BE ≥ 10 or < 10). In conclusion, the significant overlap of the property space of OATP substrates and rat BE suggests a predominant role of sinusoidal uptake transporters in biliary elimination. Categorical in silico models to predict rat BE were developed, and successful predictions were achieved.


MedChemComm | 2011

Designing glucokinase activators with reduced hypoglycemia risk: discovery of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus

Jeffrey A. Pfefferkorn; Angel Guzman-Perez; Peter J. Oates; John Litchfield; Gary E. Aspnes; Arindrajit Basak; John William Benbow; Martin A. Berliner; Jianwei Bian; Chulho Choi; Kevin Daniel Freeman-Cook; Jeffrey W. Corbett; Mary Theresa Didiuk; Joshua R. Dunetz; Kevin J. Filipski; William M. Hungerford; Christopher S. Jones; Kapil Karki; Anthony Lai Ling; Jian-Cheng Li; Leena Patel; Christian Perreault; Hud Risley; James Saenz; Wei Song; Meihua Tu; Robert J. Aiello; Karen Atkinson; Nicole Barucci; David A. Beebe

Glucokinase is a key regulator of glucose homeostasis and small molecule activators of this enzyme represent a promising opportunity for the treatment of Type 2 diabetes. Several glucokinase activators have advanced to clinical studies and demonstrated promising efficacy; however, many of these early candidates also revealed hypoglycemia as a key risk. In an effort to mitigate this hypoglycemia risk while maintaining the promising efficacy of this mechanism, we have investigated a series of substituted 2-methylbenzofurans as “partial activators” of the glucokinase enzyme leading to the identification of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as an early development candidate.


Bioorganic & Medicinal Chemistry Letters | 2009

Pyridones as glucokinase activators: Identification of a unique metabolic liability of the 4-sulfonyl-2-pyridone heterocycle

Jeffrey A. Pfefferkorn; Jihong Lou; Martha L. Minich; Kevin J. Filipski; Mingying He; Ru Zhou; Syed Ahmed; John William Benbow; Angel-Guzman Perez; Meihua Tu; John Litchfield; Raman Sharma; Karen Metzler; Francis Bourbonais; Cong Huang; David A. Beebe; Peter J. Oates

A promising area of novel anti-diabetic therapy involves identification of small molecule activators of the glucokinase enzyme to reduce blood glucose and normalize glucose stimulated insulin secretion. Herein, we report the identification and optimization of a series of 4-sulfonyl-2-pyridone activators. The activators were evaluated for in vitro biochemical activation and pharmacokinetic properties. As part of these efforts, a unique metabolic liability of the 4-sulfonyl-2-pyridone ring system was identified wherein this heterocycle readily undergoes conjugation with glutathione under non-enzymatic conditions.


Journal of Controlled Release | 2013

Development and evaluation of novel solid nanodispersion system for oral delivery of poorly water-soluble drugs

Paul Nkansah; Amy S. Antipas; Ying Lu; Manthena V. Varma; Charles J. Rotter; Brian Rago; Ayman El-Kattan; Graeme Taylor; Mario Rubio; John Litchfield

The aim of the present study was to develop and evaluate a novel drug solubilization platform (so-called solid nanodispersion) prepared by a simple co-grinding and solvent-free process. Using structurally diverse model compounds from the Pfizer drug library, including ingliforib, furosemide and celecoxib, we successfully prepared stable solid nanodispersions (SNDs) without the use of solvent or heat. Stable colloidal particles (<350 nm) containing drug, polyvinylpyrrolidone (PVP) K12 and sodium dodecyl sulfate (SDS) in 1:2.75:0.25 ratio were produced after 2 h of co-grinding. The composition and particle size of SNDs were optimized by varying the grinding media size, powder-to-grinding media ratio, milling speed and milling time. The resulting formulations contained crystalline drug and were stable at room temperature for over one month. Greater than 80% of the drug was released from the SND in less than 30 min, with sustained supersaturation over 4 h. Using furosemide (BCS class IV compound) as a model compound, we conducted transport studies with Madin-Darby canine kidney cells transfected with human MDR1 gene (MDCK/MDR1), followed by pharmacokinetics studies in rats. Results showed that the SND formulation enhanced the absorptive flux of furosemide by more than 3-fold. In the pharmacokinetics studies, the SND formulation increased C(max) and AUC of furosemide by 36.6 and 43.2 fold respectively, relative to Methocel formulation. Interestingly, physical mixture containing furosemide, PVP K12 and SDS produced a similar level of oral exposure as the SNDs, albeit with a longer T(max) than the SND formulation. The results suggest that PVP K12 and SDS were able to increase the furosemide free fraction available for oral absorption. Low solubility, poor permeability, and high first-pass effect of furosemide may also have produced the effect that small improvements in solubilization resulted in significant potentiation of the oral exposure of the physical mixture. However the use of a physical mixture of drug, polymer and surfactant, to increase drug bioavailability cannot be generalized to all drugs. There are only a few reported cases of such phenomenon. While SNDs may not be the only option to solubilize compounds in every case, SNDs are expected to be applicable to a broader chemical space of pharmaceutical compounds compared to a physical mixture. Ultimately, the formulation scientist will have to exercise judgment in choosing the appropriate formulation strategy for the compound of interest. SNDs represent a significant improvement over current enabling technologies such as nanocrystal and spray-dried dispersion technologies, in that SNDs are simple, do not require solvent or heat, are applicable to a structurally diverse chemical space, and are readily amenable to the development of solid dosage forms.


Current Topics in Medicinal Chemistry | 2013

Medicinal Chemistry Design Principles for Liver Targeting Through OATP Transporters

Meihua Tu; Alan M. Mathiowetz; Jeffrey A. Pfefferkorn; Kimberly O'keefe Cameron; Robert L. Dow; John Litchfield; Li Di; Bo Feng; Spiros Liras

The tissue distribution of a drug can have significant impact on both its efficacy and safety. As a consequence, selective tissue targeting has become an attractive approach for optimizing the window between efficacy and safety for drug targets that are ubiquitously expressed and important in key physiological processes. Given the livers key role in metabolic regulation and the fact that it is the principal tissue affected by diseases such as hepatitis B and C viruses as well as hepatocellular carcinoma, designing drugs with hepatoselective distribution profiles is an important strategy in developing safe cardiovascular, metabolic, antiviral and oncology drug candidates. In this paper, we analyze a diverse set of compounds from four different projects within Pfizer that specifically pursued liver targeting strategies. A number of key in vitro and in vivo ADME endpoints were collected including in vivo tissue exposure, oral bioavailability, clearance in preclinical species and in vitro hepatic OATP uptake, in vitro rat liver microsomal stability, permeability, solubility, logD, and others. From this analysis, we determined a set of general structure-liver-selectivity guides for designing orally bioavailable, liver-targeted candidates using liver specific OATP transporters. The guidelines have been formulated using straightforward molecular descriptors and in vitro properties that medicinal chemists routinely optimize. Our analysis emphasizes the need to focus on a chemical space with balanced lipophilicity, high aqueous solubility and low passive permeability in order to achieve the desired hepatoselectivity while maintaining fraction absorbed.


Bioorganic & Medicinal Chemistry Letters | 2013

The design and synthesis of a potent glucagon receptor antagonist with favorable physicochemical and pharmacokinetic properties as a candidate for the treatment of type 2 diabetes mellitus.

Angel Guzman-Perez; Jeffrey A. Pfefferkorn; Esther Cheng Yin Lee; Benjamin D. Stevens; Gary E. Aspnes; Jianwei Bian; Mary Theresa Didiuk; Kevin J. Filipski; Dianna E. Moore; Christian Perreault; Matthew F. Sammons; Meihua Tu; Janice A. Brown; Karen Atkinson; John Litchfield; Beijing Tan; Brian Samas; William J. Zavadoski; Christopher T. Salatto; Judith L. Treadway

A novel and potent small molecule glucagon receptor antagonist for the treatment of diabetes mellitus is reported. This candidate, (S)-3-[4-(1-{3,5-dimethyl-4-[4-(trifluoromethyl)-1H-pyrazol-1-yl]phenoxy}butyl)benzamido]propanoic acid, has lower molecular weight and lipophilicity than historical glucagon receptor antagonists, resulting in excellent selectivity in broad-panel screening, lower cytotoxicity, and excellent overall in vivo safety in early pre-clinical testing. Additionally, it displays low in vivo clearance and excellent oral bioavailability in both rats and dogs. In a rat glucagon challenge model, it was shown to reduce the glucagon-elicited glucose excursion in a dose-dependent manner and at a concentration consistent with its rat in vitro potency. Its properties make it an excellent candidate for further investigation.

Collaboration


Dive into the John Litchfield's collaboration.

Researchain Logo
Decentralizing Knowledge