Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John M. D. Storey is active.

Publication


Featured researches published by John M. D. Storey.


Chemical Society Reviews | 2007

Synthesis using aromatic homolytic substitution—recent advances

W. Russell Bowman; John M. D. Storey

This critical review aims at presenting recent developments in intramolecular aromatic homolytic substitution which has become one of the common methodologies in modern synthesis. The application of Bu3SnH-mediated cyclisations have proved especially useful. The critical review illustrates the mechanistic considerations required for planning synthetic applications and a wide range of synthetic protocols and natural product syntheses are shown. The latest evidence for the mechanisms involved in aromatic homolytic substitution are presented. (152 references).


Biochemical Pharmacology | 2014

Tau-aggregation inhibitor therapy for Alzheimer's disease.

Claude M. Wischik; Charles R. Harrington; John M. D. Storey

Many trials of drugs aimed at preventing or clearing β-amyloid pathology have failed to demonstrate efficacy in recent years and further trials continue with drugs aimed at the same targets and mechanisms. The Alzheimer neurofibrillary tangle is composed of tau and the core of its constituent filaments are made of a truncated fragment from the repeat domain of tau. This truncated tau can catalyse the conversion of normal soluble tau into aggregated oligomeric and fibrillar tau which, in turn, can spread to neighbouring neurons. Tau aggregation is not a late-life process and onset of Braak stage 1 peaks in people in their late 40s or early 50s. Tau aggregation pathology at Braak stage 1 or beyond affects 50% of the population over the age of 45. The initiation of tau aggregation requires its binding to a non-specific substrate to expose a high affinity tau-tau binding domain and it is self-propagating thereafter. The initiating substrate complex is most likely formed as a consequence of a progressive loss of endosomal-lysosomal processing of neuronal proteins, particularly of membrane proteins from mitochondria. Mutations in the APP/presenilin membrane complex may simply add to the age-related endosomal-lysosomal processing failure, bringing forward, but not directly causing, the tau aggregation cascade in carriers. Methylthioninium chloride (MTC), the first identified tau aggregation inhibitor (TAI), offers an alternative to the amyloid approach. Phase 3 trials are underway with a novel stabilized reduced form of methylthioninium (LMTX) that has improved tolerability and absorption.


Advanced Materials | 2015

Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics

Jie Xiang; Yannian Li; Quan Li; Daniel A. Paterson; John M. D. Storey; Corrie T. Imrie; Oleg D. Lavrentovich

Electrical tuning of selective reflection of light is achieved in a very broad spectral range from ultraviolet to visible and infrared by an oblique helicoidal state of a cholesteric liquid crystal in a wide temperature range (including room temperature). The phenomenon offers potential applications in tunable smart windows, lasers, optical filters and limiters, as well as in displays.


The Lancet | 2016

Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial

Serge Gauthier; Howard Feldman; Lon S. Schneider; Gordon Wilcock; Giovanni B. Frisoni; Jiri Hardlund; Hans J Moebius; Peter Bentham; Karin A Kook; Damon Wischik; Bjoern Schelter; Charles S. Davis; Roger T. Staff; Luc Bracoud; Kohkan Shamsi; John M. D. Storey; Charles R. Harrington; Claude M. Wischik

BACKGROUND Leuco-methylthioninium bis(hydromethanesulfonate; LMTM), a stable reduced form of the methylthioninium moiety, acts as a selective inhibitor of tau protein aggregation both in vitro and in transgenic mouse models. Methylthioninium chloride has previously shown potential efficacy as monotherapy in patients with Alzheimers disease. We aimed to determine whether LMTM was safe and effective in modifying disease progression in patients with mild to moderate Alzheimers disease. METHODS We did a 15-month, randomised, controlled double-blind, parallel-group trial at 115 academic centres and private research clinics in 16 countries in Europe, North America, Asia, and Russia with patients younger than 90 years with mild to moderate Alzheimers disease. Patients concomitantly using other medicines for Alzheimers disease were permitted to be included because we considered it infeasible not to allow their inclusion; however, patients using medicines carrying warnings of methaemoglobinaemia were excluded because the oxidised form of methylthioninium in high doses has been shown to induce this condition. We randomly assigned participants (3:3:4) to 75 mg LMTM twice a day, 125 mg LMTM twice a day, or control (4 mg LMTM twice a day to maintain blinding with respect to urine or faecal discolouration) administered as oral tablets. We did the randomisation with an interactive web response system using 600 blocks of length ten, and stratified patients by severity of disease, global region, whether they were concomitantly using Alzheimers disease-labelled medications, and site PET capability. Participants, their study partners (generally carers), and all assessors were masked to treatment assignment throughout the study. The coprimary outcomes were progression on the Alzheimers Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) and the Alzheimers Disease Co-operative Study-Activities of Daily Living Inventory (ADCS-ADL) scales from baseline assessed at week 65 in the modified intention-to-treat population. This trial is registered with Clinicaltrials.gov (NCT01689246) and the European Union Clinical Trials Registry (2012-002866-11). FINDINGS Between Jan 29, 2013, and June 26, 2014, we recruited and randomly assigned 891 participants to treatment (357 to control, 268 to 75 mg LMTM twice a day, and 266 to 125 mg LMTM twice a day). The prespecified primary analyses did not show any treatment benefit at either of the doses tested for the coprimary outcomes (change in ADAS-Cog score compared with control [n=354, 6·32, 95% CI 5·31-7·34]: 75 mg LMTM twice a day [n=257] -0·02, -1·60 to 1·56, p=0·9834, 125 mg LMTM twice a day [n=250] -0·43, -2·06 to 1·20, p=0·9323; change in ADCS-ADL score compared with control [-8·22, 95% CI -9·63 to -6·82]: 75 mg LMTM twice a day -0·93, -3·12 to 1·26, p=0·8659; 125 mg LMTM twice a day -0·34, -2·61 to 1·93, p=0·9479). Gastrointestinal and urinary effects were the most common adverse events with both high doses of LMTM, and the most common causes for discontinuation. Non-clinically significant dose-dependent reductions in haemoglobin concentrations were the most common laboratory abnormality. Amyloid-related imaging abnormalities were noted in less than 1% (8/885) of participants. INTERPRETATION The primary analysis for this study was negative, and the results do not suggest benefit of LMTM as an add-on treatment for patients with mild to moderate Alzheimers disease. Findings from a recently completed 18-month trial of patients with mild Alzheimers disease will be reported soon. FUNDING TauRx Therapeutics.


Journal of Pharmacology and Experimental Therapeutics | 2014

Complex Disposition of Methylthioninium Redox Forms Determines Efficacy in Tau Aggregation Inhibitor Therapy for Alzheimer’s Disease

Thomas C. Baddeley; Jennifer McCaffrey; John M. D. Storey; John Kwok Shing Cheung; Valeria Melis; David Horsley; Charles R. Harrington; Claude M. Wischik

Methylthioninium (MT) is a tau aggregation inhibitor with therapeutic potential in Alzheimer’s disease (AD). MT exists in equilibrium between reduced [leucomethylthioninium (LMT)] and oxidized (MT+) forms; as a chloride salt [methylthioninium chloride (MTC), “methylene blue”], it is stabilized in its MT+ form. Although the results of a phase 2 study of MTC in 321 mild/moderate AD subjects identified a 138-mg MT/day dose as the minimum effective dose on cognitive and imaging end points, further clinical development of MT was delayed pending resolution of the unexpected lack of efficacy of the 228-mg MT/day dose. We hypothesized that the failure of dose response may depend on differences known at the time in dissolution in simulated gastric and intestinal fluids of the 100-mg MTC capsules used to deliver the 228-mg dose and reflect previously unsuspected differences in redox processing of MT at different levels in the gut. The synthesis of a novel chemical entity, LMTX (providing LMT in a stable anhydrous crystalline form), has enabled a systematic comparison of the pharmacokinetic properties of MTC and LMTX in preclinical and clinical studies. The quantity of MT released in water or gastric fluid within 60 minutes proved in retrospect to be an important determinant of clinical efficacy. A further factor was a dose-dependent limitation in the ability to absorb MT in the presence of food when delivered in the MT+ form as MTC. A model is presented to account for the complexity of MT absorption, which may have relevance for other similar redox molecules.


Journal of Biological Chemistry | 2015

Cellular Models of Aggregation-dependent Template-directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer Disease

Charles R. Harrington; John M. D. Storey; Scott Clunas; Kathleen A. Harrington; David Horsley; Ahtsham Ishaq; Steven Kemp; Christopher Paul Larch; Colin Marshall; Sarah Louise Nicoll; Janet Elizabeth Rickard; Michael Simpson; James Peter Sinclair; Lynda J. Storey; Claude M. Wischik

Background: Tau aggregation inhibitors could treat Alzheimer disease. Results: Stable reduced forms of leucomethylthioninium (LMTX®) are active in blocking prion-like Tau aggregation in novel cellular models. Conclusion: The intracellular Ki (0.12 μm) is comparable with brain levels required for clinical benefit. Significance: LMTX® could treat Alzheimer disease. Alzheimer disease (AD) is a degenerative tauopathy characterized by aggregation of Tau protein through the repeat domain to form intraneuronal paired helical filaments (PHFs). We report two cell models in which we control the inherent toxicity of the core Tau fragment. These models demonstrate the properties of prion-like recruitment of full-length Tau into an aggregation pathway in which template-directed, endogenous truncation propagates aggregation through the core Tau binding domain. We use these in combination with dissolution of native PHFs to quantify the activity of Tau aggregation inhibitors (TAIs). We report the synthesis of novel stable crystalline leucomethylthioninium salts (LMTX®), which overcome the pharmacokinetic limitations of methylthioninium chloride. LMTX®, as either a dihydromesylate or a dihydrobromide salt, retains TAI activity in vitro and disrupts PHFs isolated from AD brain tissues at 0.16 μm. The Ki value for intracellular TAI activity, which we have been able to determine for the first time, is 0.12 μm. These values are close to the steady state trough brain concentration of methylthioninium ion (0.18 μm) that is required to arrest progression of AD on clinical and imaging end points and the minimum brain concentration (0.13 μm) required to reverse behavioral deficits and pathology in Tau transgenic mice.


Behavioural Pharmacology | 2015

Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models

Valeria Melis; Mandy Magbagbeolu; Janet Elizabeth Rickard; David Horsley; Kathleen Davidson; Kathleen A. Harrington; Keith Goatman; Elizabeth Anne Goatman; Serena Deiana; Steve P. Close; Claudia Zabke; Karsten Stamer; Silke Dietze; Karima Schwab; John M. D. Storey; Charles R. Harrington; Claude M. Wischik; Franz Theuring; Gernot Riedel

Given the repeated failure of amyloid-based approaches in Alzheimer’s disease, there is increasing interest in tau-based therapeutics. Although methylthioninium (MT) treatment was found to be beneficial in tau transgenic models, the brain concentrations required to inhibit tau aggregation in vivo are unknown. The comparative efficacy of methylthioninium chloride (MTC) and leucomethylthioninium salts (LMTX; 5–75 mg/kg; oral administration for 3–8 weeks) was assessed in two novel transgenic tau mouse lines. Behavioural (spatial water maze, RotaRod motor performance) and histopathological (tau load per brain region) proxies were applied. Both MTC and LMTX dose-dependently rescued the learning impairment and restored behavioural flexibility in a spatial problem-solving water maze task in Line 1 (minimum effective dose: 35 mg MT/kg for MTC, 9 mg MT/kg for LMTX) and corrected motor learning in Line 66 (effective doses: 4 mg MT/kg). Simultaneously, both drugs reduced the number of tau-reactive neurons, particularly in the hippocampus and entorhinal cortex in Line 1 and in a more widespread manner in Line 66. MT levels in the brain followed a sigmoidal concentration–response relationship over a 10-fold range (0.13–1.38 μmol/l). These data establish that diaminophenothiazine compounds, like MT, can reverse both spatial and motor learning deficits and reduce the underlying tau pathology, and therefore offer the potential for treatment of tauopathies.


Liquid Crystals | 2015

New insights into the liquid crystal behaviour of hydrogen-bonded mixtures provided by temperature-dependent FTIR spectroscopy

Daniel A. Paterson; Alfonso Martinez-Felipe; Suzanne M. Jansze; Antonius T. M. Marcelis; John M. D. Storey; Corrie T. Imrie

The phase behaviour of equimolar mixtures of 6-(4ʹ-cyanobiphenyl-4-yl)hexyloxybenzoic acid (CB6OBA) with either 1-(4-butylazobenzene-4ʹ-oxy)-5-(4-oxypyridine)pentane (BuABO5OPyr) or 1-(4-butylazobenzene-4ʹ-oxy)-6-(4-oxypyridine)hexane (BuABO6OPyr) is reported. CB6OBA shows a monotropic twist-bend nematic phase and an enantiotropic nematic phase whereas the two pyridyl-based components do not exhibit liquid crystallinity. Both equimolar mixtures (CB6OBA/BuABOnOPyr) show enantiotropic nematic phases. The nematic-isotropic transition temperature and associated entropy change are higher for the CB6OBA/BuABO6OPyr mixture than for the CB6OBA/BuABO5OPyr mixture. This may be accounted for in terms of the average shapes of the hydrogen-bonded 1:1 complexes formed between the two differing components in the mixtures. However, Fourier transform infrared spectroscopy reveals that this complex is not formed quantitatively, but instead a complex mixture exists over the complete temperature range studied, involving the 1:1 complex, both cyclic and open acid dimers, free acid and hence, free BuABOnOPyr molecules.


Liquid Crystals | 2017

Structure–property relationships in twist-bend nematogens: the influence of terminal groups

Jordan P. Abberley; Suzanne M. Jansze; Rebecca Walker; Daniel A. Paterson; Peter A. Henderson; Antonius T. M. Marcelis; John M. D. Storey; Corrie T. Imrie

ABSTRACT The synthesis and characterisation of a range of non-symmetric liquid crystal dimers designed to exhibit the twist-bend nematic phase is reported. Beginning with 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane, each nitrile group is exchanged systematically for a methoxy group. The behaviour of these dimers is interpreted in terms of their bent shape being the predominant driving force for the formation of the twist-bend nematic phase, and the small differences between the twist-bend nematic–nematic transition temperatures are attributed to the differences between the interaction strength parameters of the mesogenic units. The 4-alkyloxyphenyl 4-[6-(4′-cyanobiphenyl-4-yl)hexyloxy]benzoates with ethyl, butyl, hexyl and octyl chains show the twist-bend nematic phase, whereas the corresponding 4-alkyloxyphenyl 4-[5-(4′-cyanobiphenyl-4-yloxy)pentyloxy]benzoates do not. This difference in behaviour is attributed to the more bent structure of the former. Increasing the terminal chain length initially decreases the twist-bend nematic–nematic transition temperature and this suggests that the chain disrupts the interactions between the mesogenic units. Subsequent increases in chain length have a smaller effect suggesting that the chain can be accommodated within an intercalated arrangement. The transitional behaviour of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-butyloxybiphenyl-4′-yl) hexane is compared to that of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-((S)-2-methyl)butyloxybiphenyl-4′-yl) hexane, and it is shown that chain branching strongly destabilises the twist-bend nematic phase. This is attributed to difficulties associated with packing the dimers. Graphical Abstract


Proceedings of the National Academy of Sciences of the United States of America | 2016

Electrically tunable laser based on oblique heliconical cholesteric liquid crystal

Jie Xiang; Andrii Varanytsia; Fred Minkowski; Daniel A. Paterson; John M. D. Storey; Corrie T. Imrie; Oleg D. Lavrentovich; Peter Palffy-Muhoray

Significance Liquid-crystal lasers based on micrometer-scale self-organization of organic molecules into the so-called cholesteric liquid crystal are simple to manufacture; they are small in size and low in cost and power consumption. Their potential applications range from sensing and imaging to informational displays and miniature “lab-on-a-chip” devices. We report a cholesteric structure used as the laser’s resonator cavity that enables a continuous real-time tuning of the emitted wavelength in a very broad range by applying an electric field. The structure is heliconical, with the molecules rotating around a helical axis and being tilted toward this axis. The electric field controls the tilt and the pitch, thus changing the wavelength by at least 100 nm. A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch p in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch p and thus the wavelength of lasing λ¯ can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with λ¯ spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLCOH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLCOH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography.

Collaboration


Dive into the John M. D. Storey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge