Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John M. Hancock is active.

Publication


Featured researches published by John M. Hancock.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana

Radhika Desikan; Rachael Griffiths; John M. Hancock; Steven J. Neill

The plant hormone abscisic acid (ABA), synthesized in response to water-deficit stress, induces stomatal closure via activation of complex signaling cascades. Recent work has established that nitric oxide (NO) is a key signaling molecule mediating ABA-induced stomatal closure. However, the biosynthetic origin of NO in guard cells has not yet been resolved. Here, we provide pharmacological, physiological, and genetic evidence that NO synthesis in Arabidopsis guard cells is mediated by the enzyme nitrate reductase (NR). Guard cells of wild-type Arabidopsis generate NO in response to treatment with ABA and nitrite, a substrate for NR. Moreover, NR-mediated NO synthesis is required for ABA-induced stomatal closure. However, in the NR double mutant, nia1, nia2 that has diminished NR activity, guard cells do not synthesize NO nor do the stomata close in response to ABA or nitrite, although stomatal opening is still inhibited by ABA. Furthermore, by using the ABA-insensitive (ABI) abi1–1 and abi2–1 mutants, we show that the ABI1 and ABI2 protein phosphatases are downstream of NO in the ABA signal-transduction cascade. These data demonstrate a previously uncharacterized signaling role for NR, that of mediating ABA-induced NO synthesis in Arabidopsis guard cells.


Nature Biotechnology | 2008

Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project

Chris F. Taylor; Dawn Field; Susanna-Assunta Sansone; Jan Aerts; Rolf Apweiler; Michael Ashburner; Catherine A. Ball; Pierre Alain Binz; Molly Bogue; Tim Booth; Alvis Brazma; Ryan R. Brinkman; Adam Clark; Eric W. Deutsch; Oliver Fiehn; Jennifer Fostel; Peter Ghazal; Frank Gibson; Tanya Gray; Graeme Grimes; John M. Hancock; Nigel Hardy; Henning Hermjakob; Randall K. Julian; Matthew Kane; Carsten Kettner; Christopher R. Kinsinger; Eugene Kolker; Martin Kuiper; Nicolas Le Novère

The Minimum Information for Biological and Biomedical Investigations (MIBBI) project aims to foster the coordinated development of minimum-information checklists and provide a resource for those exploring the range of extant checklists.


Nucleic Acids Research | 2003

PlantProm: a database of plant promoter sequences

Ilham A. Shahmuradov; Alexander Gammerman; John M. Hancock; Peter M. Bramley; Victor V. Solovyev

PlantProm DB, a plant promoter database, is an annotated, non-redundant collection of proximal promoter sequences for RNA polymerase II with experimentally determined transcription start site(s), TSS, from various plant species. The first release (2002.01) of PlantProm DB contains 305 entries including 71, 220 and 14 promoters from monocot, dicot and other plants, respectively. It provides DNA sequence of the promoter regions (-200 : +51) with TSS on the fixed position +201, taxonomic/promoter type classification of promoters and Nucleotide Frequency Matrices (NFM) for promoter elements: TATA-box, CCAAT-box and TSS-motif (Inr). Analysis of TSS-motifs revealed that their composition is different in dicots and monocots, as well as for TATA and TATA-less promoters. The database serves as learning set in developing plant promoter prediction programs. One such program (TSSP) based on discriminant analysis has been created by Softberry Inc. and the application of a support ftp: vector machine approach for promoter identification is under development. PlantProm DB is available at http://mendel.cs.rhul.ac.uk/ and http://www.softberry.com/.


Genome Biology | 2004

Using ontologies to describe mouse phenotypes

Georgios Vasileios Gkoutos; E. C. J. Green; Ann-Marie Mallon; John M. Hancock; Duncan Davidson

The mouse is an important model of human genetic disease. Describing phenotypes of mutant mice in a standard, structured manner that will facilitate data mining is a major challenge for bioinformatics. Here we describe a novel, compositional approach to this problem which combines core ontologies from a variety of sources. This produces a framework with greater flexibility, power and economy than previous approaches. We discuss some of the issues this approach raises.


Genome Biology | 2013

A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains

Michelle Simon; Simon Greenaway; Jacqueline K. White; Helmut Fuchs; Valérie Gailus-Durner; Sara Wells; Tania Sorg; Kim Wong; Elodie Bedu; Elizabeth J. Cartwright; Romain Dacquin; Sophia Djebali; Jeanne Estabel; Jochen Graw; Neil Ingham; Ian J. Jackson; Andreas Lengeling; Silvia Mandillo; Jacqueline Marvel; Hamid Meziane; Frédéric Preitner; Oliver Puk; Michel J. Roux; David J. Adams; Sarah Atkins; Abdel Ayadi; Lore Becker; Andrew Blake; Debra Brooker; Heather Cater

BackgroundThe mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.ResultsWe undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.ConclusionsComparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.


Journal of Molecular Evolution | 1995

The contribution of slippage-like processes to genome evolution

John M. Hancock

Simple sequences present in long (>30 kb) sequences representative of the single-copy genome of five species (Homo sapiens, Caenorhabditis elegans Saccharomyces cerevisiae, E. coli, and Mycobacterium leprae) have been analyzed. A close relationship was observed between genome size and the overall level of sequence repetition. This suggested that the incorporation of simple sequences had accompanied increases of genome size during evolution. Densities of simple sequence motifs were higher in noncoding regions than in coding regions in eukaryotes but not in eubacteria. All five genomes showed very biased frequency distributions of simple sequence motifs in all species, particularly in eukaryotes where AAA and TTT predominated. Interspecific comparisons showed that noncoding sequences in eukaryotes showed highly significantly similar frequency distributions of simple sequence motifs but this was not true of coding sequences. ANOVA of the frequency distributions of simple sequence motifs indicated strong contributions from motif base composition and repeat unit length, but much of the variation remained unexplained by these parameters. The sequence composition of simple sequences therefore appears to reflect both underlying sequence biases in slippage-like processes and the action of selection. Frequency distributions of simple sequence motifs in coding sequences correlated weakly or not at all with those in noncoding sequences. Selection on coding sequences to eliminate undesirable sequences may therefore have been strong, particularly in the human lineage.


Nature | 2009

Post-publication sharing of data and tools

Paul N. Schofield; Tania Bubela; Thomas Weaver; Lili Portilla; Stephen Brown; John M. Hancock; David Einhorn; Glauco P. Tocchini-Valentini; Martin Hrabé de Angelis; Nadia Rosenthal

Despite existing guidelines on access to data and bioresources, good practice is not widespread. A meeting of mouse researchers in Rome proposes ways to promote a culture of sharing.


Journal of Biological Chemistry | 1999

A Common Binding Site on the Microsomal Triglyceride Transfer Protein for Apolipoprotein B and Protein Disulfide Isomerase

Bradbury P; Mann Cj; Köchl S; Timothy A. Anderson; Chester Sa; John M. Hancock; Penelope J. Ritchie; Joanna S. Amey; Harrison Gb; David G. Levitt; Leonard J. Banaszak; James Scott; Carol C. Shoulders

The assembly of triglyceride-rich lipoproteins requires the formation in the endoplasmic reticulum of a complex between apolipoprotein B (apoB), a microsomal triglyceride transfer protein (MTP), and protein disulfide isomerase (PDI). In the MTP complex, the amino-terminal region of MTP (residues 22–303) interacts with the amino-terminal region of apoB (residues 1–264). Here, we report the identification and characterization of a site on apoB between residues 512 and 721, which interacts with residues 517–603 of MTP. PDI binds in close proximity to this apoB binding site on MTP. The proximity of these binding sites on MTP for PDI and amino acids 512–721 of apoB was evident from studies carried out in a yeast two-hybrid system and by co-immunoprecipitation. The expression of PDI with MTP and apoB16 (residues 1–721) in the baculovirus expression system reduced the amount of MTP co-immunoprecipitated with apoB by 73%. The interaction of residues 512–721 of apoB with MTP facilitates lipoprotein production. Mutations of apoB that markedly reduced this interaction also reduced the level of apoB-containing lipoprotein secretion.


Genome Biology | 2009

Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins.

Michelle Simon; John M. Hancock

BackgroundAmino acid repeats (AARs) are common features of protein sequences. They often evolve rapidly and are involved in a number of human diseases. They also show significant associations with particular Gene Ontology (GO) functional categories, particularly transcription, suggesting they play some role in protein function. It has been suggested recently that AARs play a significant role in the evolution of intrinsically unstructured regions (IURs) of proteins. We investigate the relationship between AAR frequency and evolution and their localization within proteins based on a set of 5,815 orthologous proteins from four mammalian (human, chimpanzee, mouse and rat) and a bird (chicken) genome. We consider two classes of AAR (tandem repeats and cryptic repeats: regions of proteins containing overrepresentations of short amino acid repeats).ResultsMammals show very similar repeat frequencies but chicken shows lower frequencies of many of the cryptic repeats common in mammals. Regions flanking tandem AARs evolve more rapidly than the rest of the protein containing the repeat and this phenomenon is more pronounced for non-conserved repeats than for conserved ones. GO associations are similar to those previously described for the mammals, but chicken cryptic repeats show fewer significant associations. Comparing the overlaps of AARs with IURs and protein domains showed that up to 96% of some AAR types are associated preferentially with IURs. However, no more than 15% of IURs contained an AAR.ConclusionsTheir location within IURs explains many of the evolutionary properties of AARs. Further study is needed on the types of IURs containing AARs.


PLOS Genetics | 2006

Understanding Mammalian Genetic Systems: The Challenge of Phenotyping in the Mouse

Steve D.M. Brown; John M. Hancock; Hilary Gates

Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

Collaboration


Dive into the John M. Hancock's collaboration.

Top Co-Authors

Avatar

Ann-Marie Mallon

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Blake

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassilis Aidinis

Alexander Fleming Biomedical Sciences Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Smedley

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge