John M. Hickey
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John M. Hickey.
Journal of Pharmaceutical Sciences | 2013
Prakash Manikwar; Ranajoy Majumdar; John M. Hickey; Santosh V. Thakkar; Hardeep S. Samra; Hasige A. Sathish; Steven M. Bishop; C. Russell Middaugh; David D. Weis; David B. Volkin
The effects of sucrose and arginine on the conformational and storage stability of an IgG1 monoclonal antibody (mAb) were monitored by differential scanning calorimetry (DSC) and size-exclusion chromatography (SEC), respectively. Excipient effects on protein physical stability were then compared with their effects on the local flexibility of the mAb in solution at pH 6, 25°C using hydrogen/deuterium-exchange mass spectrometry (H/D-MS). Compared with a 0.1 M NaCl control, sucrose (0.5 M) increased conformational stability (T(m) values), slowed the rate of monomer loss, reduced the formation of insoluble aggregates, and resulted in a global trend of small decreases in local flexibility across most regions of the mAb. In contrast, the addition of arginine (0.5 M) decreased the mAbs conformational stability, increased the rate of loss of monomer with elevated levels of soluble and insoluble aggregates, and led to significant increases in the local flexibility in specific regions of the mAb, most notably within the constant domain 2 of the heavy chain (C(H)2). These results provide new insights into the effect of sucrose and arginine on the local dynamics of IgG1 domains as well as preliminary correlations between local flexibility within specific segments of the C(H)2 domain (notably heavy chain 241-251) and the mAbs overall physical stability.
Biochemistry | 2013
Ranajoy Majumdar; Prakash Manikwar; John M. Hickey; Hardeep S. Samra; Hasige A. Sathish; Steven M. Bishop; C. Russell Middaugh; David B. Volkin; David D. Weis
This work examines the effect of three anions from the Hofmeister series (sulfate, chloride, and thiocyanate) on the conformational stability and aggregation rate of an IgG1 monoclonal antibody (mAb) and corresponding changes in the mAbs backbone flexibility (at pH 6 and 25 °C). Compared to a 0.1 M NaCl control, thiocyanate (0.5 M) decreased the melting temperatures (Tm) for three observed conformational transitions within the mAb by 6-9 °C, as measured by differential scanning calorimetry. Thiocyanate also accelerated the rate of monomer loss at 40 °C over 12 months, as monitored by size exclusion chromatography. Backbone flexibility, as measured via H/D exchange mass spectrometry, increased in two segments in the CH2 domain with more subtle changes across several additional regions. Chloride (0.5 M) caused slight increases in the Tm values, small changes in aggregation rate, and minimal yet consistent decreases in flexibility across various domains with larger effects noted within the VL, CH1, and CH3 domains. In contrast, 0.5 M sulfate increased Tm values, had small stabilizing influences on aggregate formation over time, yet substantially increased the flexibility of two specific regions in the CH1 and VL domains. While thiocyanate-induced conformational destabilization of the mAb correlated with increased local flexibility of specific regions in the CH2 domain (especially residues 241-251 in the heavy chain), the stabilizing anion sulfate did not affect these CH2 regions.
mAbs | 2015
Jayant Arora; John M. Hickey; Ranajoy Majumdar; Reza Esfandiary; Steven M. Bishop; Hardeep S. Samra; C. Russell Middaugh; David D. Weis; David B. Volkin
There is a need for new analytical approaches to better characterize the nature of the concentration-dependent, reversible self-association (RSA) of monoclonal antibodies (mAbs) directly, and with high resolution, when these proteins are formulated as highly concentrated solutions. In the work reported here, hydrogen exchange mass spectrometry (HX-MS) was used to define the concentration-dependent RSA interface, and to characterize the effects of association on the backbone dynamics of an IgG1 mAb (mAb-C). Dynamic light scattering, chemical cross-linking, and solution viscosity measurements were used to determine conditions that caused the RSA of mAb-C. A novel HX-MS experimental approach was then applied to directly monitor differences in local flexibility of mAb-C due to RSA at different protein concentrations in deuterated buffers. First, a stable formulation containing lyoprotectants that permitted freeze-drying of mAb-C at both 5 and 60 mg/mL was identified. Upon reconstitution with RSA-promoting deuterated solutions, the low vs. high protein concentration samples displayed different levels of solution viscosity (i.e., approx. 1 to 75 mPa.s). The reconstituted mAb-C samples were then analyzed by HX-MS. Two specific sequences covering complementarity-determining regions CDR2H and CDR2L (in the variable heavy and light chains, respectively) showed significant protection against deuterium uptake (i.e., decreased hydrogen exchange). These results define the major protein-protein interfaces associated with the concentration-dependent RSA of mAb-C. Surprisingly, certain peptide segments in the VH domain, the constant domain (CH2), and the hinge region (CH1-CH2 interface) concomitantly showed significant increases in local flexibility at high vs. low protein concentrations. These results indicate the presence of longer-range, distant dynamic coupling effects within mAb-C occurring upon RSA.
Journal of Bacteriology | 2011
John M. Hickey; L. Weldon; P. S. Hefty
Two-component signal transduction systems are widespread in bacteria and are essential regulatory mechanisms for many biological processes. These systems predominantly rely on a sensor kinase to phosphorylate a response regulator for controlling activity, which is frequently transcriptional regulation. In recent years, an increasing number of atypical response regulators have been discovered in phylogenetically diverse bacteria. These atypical response regulators are not controlled by phosphorylation and exhibit transcriptional activity in their wild-type form. Relatively little is known regarding the mechanisms utilized by these atypical response regulators and the conserved characteristics of these atypical response regulators. Chlamydia spp. are medically important bacteria and encode an atypical OmpR/PhoB subfamily response regulator termed ChxR. In this study, protein expression analysis supports that ChxR is likely exerting its effect during the middle and late stages of the chlamydial developmental cycle, stages that include the formation of infectious elementary bodies. In the absence of detectable phosphorylation, ChxR formed homodimers in vitro and in vivo, similar to a phosphorylated OmpR/PhoB subfamily response regulator. ChxR was demonstrated to bind to its own promoter in vivo, supporting the role of ChxR as an autoactivator. Detailed analysis of the ChxR binding sites within its own promoter revealed a conserved cis-acting motif that includes a tandem repeat sequence. ChxR binds specifically to each of the individual sites and exhibits a relatively large spectrum of differential affinity. Taken together, these observations support the conclusion that ChxR, in the absence of phosphorylation, exhibits many of the characteristics of a phosphorylated (active) OmpR/PhoB subfamily response regulator.
Journal of Pharmaceutical Sciences | 2014
John M. Hickey; Kathleen Holtz; Prakash Manikwar; Sangeeta B. Joshi; Clifton McPherson; Barry C. Buckland; Indresh Srivastava; C. Russell Middaugh; David B. Volkin
The recombinant hemagglutinin (rHA)-based influenza vaccine Flublok® has recently been approved in the United States as an alternative to the traditional egg-derived flu vaccines. Flublok is a purified vaccine with a hemagglutinin content that is threefold higher than standard inactivated influenza vaccines. When rHA derived from an H3N2 influenza virus was expressed, purified, and stored for 1 month, a rapid loss of in vitro potency (∼50%) was observed as measured by the single radial immunodiffusion (SRID) assay. A comprehensive characterization of the rHA protein antigen was pursued to identify the potential causes and mechanisms of this potency loss. In addition, the biophysical and chemical stability of the rHA in different formulations and storage conditions was evaluated over time. Results demonstrate that the potency loss over time did not correlate with trends in changes to the higher order structure or hydrodynamic size of the rHA. The most likely mechanism for the early loss of potency was disulfide-mediated cross-linking of rHA, as the formation of non-native disulfide-linked multimers over time correlated well with the observed potency loss. Furthermore, a loss of free thiol content, particularly in specific cysteine residues in the antigens C-terminus, was correlated with potency loss measured by SRID.
Molecular Microbiology | 2015
Kyle E. Kemege; John M. Hickey; Michael L. Barta; Jason R. Wickstrum; Namita Balwalli; Scott Lovell; Kevin P. Battaile; P. Scott Hefty
Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non‐canonical mechanisms may be employed. The rod‐shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient Escherichia coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia.
Journal of Bacteriology | 2011
Kyle E. Kemege; John M. Hickey; Scott Lovell; Kevin P. Battaile; Yang Zhang; P. Scott Hefty
Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the proteins functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF) CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-Å C(α) root mean square deviation [RMSD]) the high-resolution (1.8-Å) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur.
Clinical and Vaccine Immunology | 2017
Ronald T. Toth; Siva Krishna Angalakurthi; Greta Van Slyke; David J. Vance; John M. Hickey; Sangeeta B. Joshi; C. Russell Middaugh; David B. Volkin; David D. Weis; Nicholas J. Mantis
ABSTRACT RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVaxs α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the “back side” (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed β-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species.
PLOS ONE | 2014
Michael L. Barta; John M. Hickey; Asokan Anbanandam; Kevin Dyer; Michal Hammel; P. Scott Hefty
ChxR is an atypical two-component signal transduction response regulator (RR) of the OmpR/PhoB subfamily encoded by the obligate intracellular bacterial pathogen Chlamydia trachomatis. Despite structural homology within both receiver and effector domains to prototypical subfamily members, ChxR does not require phosphorylation for dimer formation, DNA binding or transcriptional activation. Thus, we hypothesized that ChxR is in a conformation optimal for DNA binding with limited interdomain interactions. To address this hypothesis, the NMR solution structure of the ChxR effector domain was determined and used in combination with the previously reported ChxR receiver domain structure to generate a full-length dimer model based upon SAXS analysis. Small-angle scattering of ChxR supported a dimer with minimal interdomain interactions and effector domains in a conformation that appears to require only subtle reorientation for optimal major/minor groove DNA interactions. SAXS modeling also supported that the effector domains were in a head-to-tail conformation, consistent with ChxR recognizing tandem DNA repeats. The effector domain structure was leveraged to identify key residues that were critical for maintaining protein - nucleic acid interactions. In combination with prior analysis of the essential location of specific nucleotides for ChxR recognition of DNA, a model of the full-length ChxR dimer bound to its cognate cis-acting element was generated.
Vaccine | 2017
Vishal M. Toprani; Neha Sahni; John M. Hickey; George Robertson; C. Russell Middaugh; Sangeeta B. Joshi; David B. Volkin
This work describes the formulation design and development of a novel protein based adjuvant, a double mutant of heat labile toxin (dmLT), based on knowledge of the protein’s structural integrity and physicochemical degradation pathways. Various classes of pharmaceutical excipients were screened for their stabilizing effect on dmLT during exposure to thermal and agitation stresses as monitored by high throughput analytical assays for dmLT degradation. Sucrose, phosphate, sodium chloride, methionine and polysorbate-80 were identified as potential stabilizers that protected dmLT against either conformational destabilization, aggregation/particle formation or chemical degradation (e.g., Met oxidation and Lys glycation). Different combinations and concentrations of the selected stabilizers were then evaluated to further optimize dmLT stability while maintaining pharmaceutically acceptable ranges of solution pH and osmolality. The effect of multiple freeze-thaw (FT) cycles on the physical stability of candidate bulk formulations was also examined. Increasing the polysorbate-80 concentration to 0.1% in the lead candidate bulk formulation mitigated the loss of protein mass during FT. This formulation development study enabled the design of a new bulk formulation of the dmLT adjuvant and provides flexibility for future use in combination with a variety of different vaccine dosage forms with different antigens.