Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John M. Johnson is active.

Publication


Featured researches published by John M. Johnson.


Journal of Applied Physiology | 2010

Local thermal control of the human cutaneous circulation.

John M. Johnson; Dean L. Kellogg

The level of skin blood flow is subject to both reflex thermoregulatory control and influences from the direct effects of warming and cooling the skin. The effects of local changes in temperature are capable of maximally vasoconstricting or vasodilating the skin. They are brought about by a combination of mechanisms involving endothelial, adrenergic, and sensory systems. Local warming initiates a transient vasodilation through an axon reflex, succeeded by a plateau phase due largely to nitric oxide. Both phases are supported by sympathetic transmitters. The plateau phase is followed by the die-away phenomenon, a slow reversal of the vasodilation that is dependent on intact sympathetic vasoconstrictor nerves. The vasoconstriction with local skin cooling is brought about, in part, by a postsynaptic upregulation of α(2c)-adrenoceptors and, in part, by inhibition of the nitric oxide system at at least two points. There is also an early vasodilator response to local cooling, dependent on the rate of cooling. The mechanism for that transient vasodilation is not known, but it is inhibited by intact sympathetic vasoconstrictor nerve function and by intact sensory nerve function.


Medicine and Science in Sports and Exercise | 1992

Control of skin blood flow during exercise.

W. Larry Kenney; John M. Johnson

When body temperature rises, skin blood flow (SkBF) increases to effect transfer of metabolic heat from the core to the skin. This convective heat transfer is never more important than during dynamic exercise. Control of SkBF involves a complex interaction of regulatory systems (body temperature, blood pressure, metabolism, etc.) and efferent mechanisms (passive withdrawal of constrictor tone, reflex vasoconstriction, active vasodilation). The purpose of this paper is to provide an updated review of this complex control system--control that allows for maintenance of blood pressure and perfusion of active muscle without adverse impact on thermoregulation. Also discussed are vasomotor mechanisms, various components of exercise that are important in the control of SkBF (e.g., intensity, posture, and duration of exercise), and the influences of such factors as blood volume and tonicity, aerobic fitness and heat acclimation, and age.


Medicine and Science in Sports and Exercise | 1998

Physical training and the control of skin blood flow

John M. Johnson

The process of physical training places frequent significant demands for increased blood flow to cardiac and skeletal muscle tissues and sets into action adaptive responses to better enable the circulatory system to meet those demands. These adaptive changes and the associated mechanisms are dealt with elegantly in other portions of this symposium. The repeated bouts of dynamic exercise with training also expose the temperature regulatory system to increased body temperatures and attendant demands for increased heat loss. These frequent demands for increased heat loss lead to adaptations in the control of the cutaneous circulation. There are consistent results among the limited number of studies conducted to test this question directly. The primary result is that skin blood flow in the trained state is higher at a given level of internal temperature than in the sedentary or less trained state. This result is seen in both cross-sectional and longitudinal comparisons, in older and younger subjects, in responses to heat at rest and during exercise, and in the changes with detraining as well as those attending training. In some studies this adjustment is made by a shift in the threshold internal temperature at which skin blood flow begins to rise, whereas in others it is accomplished by an increase in the sensitivity of the skin blood flow-internal temperature relationship. Reasons for this variation are not clear. The cutaneous circulation is controlled by vasoconstrictor and separate vasodilator nerves, but it is not clear how much of the training effect is manifest through one or the other neural system. However, indirect data suggest that vasoconstrictor activity is generally reduced and that active vasodilator activity is initiated at lower internal temperatures. It is also not clear to what extent the mechanism for the training effect is through the acclimatization process, as opposed to the influence of training, itself. In any case, the adjustments in control of the cutaneous circulation with physical training increase the capacity of the circulation to transport and eliminate heat as that training process increases the capacity of the active tissues to produce that heat.


Medicine and Science in Sports and Exercise | 1998

Muscle metaboreceptor modulation of cutaneous active vasodilation

Craig G. Crandall; Dan P. Stephens; John M. Johnson

PURPOSEnIsometric handgrip exercise in hyperthermia has been shown to reduce cutaneous vascular conductance (CVC) by inhibiting the cutaneous active vasodilator system.nnnMETHODSnTo identify whether this response was initiated by muscle metaboreceptors, in seven subjects two 3-min bouts of isometric handgrip exercise in hyperthermia were performed, followed by 2 min of postexercise ischemia (PEI). An index of forearm skin blood flow (laser-Doppler flowmetry) was measured on the contralateral arm at an unblocked site and at a site at which adrenergic vasoconstrictor function was blocked via bretylium iontophoresis to reveal active cutaneous vasodilator function unambiguously. Sweat rate was measured via capacitance hygrometry, CVC was indexed from the ratio of skin blood flow to mean arterial pressure and was expressed as a percentage of maximal CVC at that site. In normothermia, neither isometric exercise nor PEI affected CVC (P > 0.05).nnnRESULTSnThe first bout of isometric handgrip exercise in hyperthermia reduced CVC at control sites and this reduction persisted through PEI (pre-exercise: 59.8 +/- 5.4, exercise: 49.8 +/- 4.9, PEI: 49.7 +/- 5.3% of maximum; both P < 0.05), whereas there were no significant changes in CVC at the bretylium treated sites. The succeeding bout of isometric exercise in hyperthermia significantly reduced CVC at both untreated (pre-exercise: 59.0 +/- 4.8, exercise: 47.3 +/- 4.0, PEI: 50.1 +/- 4.1% of maximum; both P < 0.05) and bretylium treated sites (pre-exercise: 61.4 +/- 7.3, exercise: 50.6 +/- 5.1, PEI: 53.9 +/- 6.0% of maximum, both P < 0.05). At both sites, CVC during PEI was lower than during the pre-exercise period (P < 0.05). Sweat rate rose significantly during both bouts of isometric exercise and remained elevated during PEI.nnnCONCLUSIONSnThese data suggest that the reduction in CVC during isometric exercise in hyperthermia, including the inhibition of the active vasodilator system, is primarily mediated by muscle metaboreceptors, whereas central command or muscle mechanoreceptors have less influence.


Journal of Applied Physiology | 2010

VIP/PACAP Receptor Mediation of Cutaneous Active Vasodilation During Heat Stress in Humans

Dean L. Kellogg; Joan Liu Zhao; Yubo Wu; John M. Johnson

Vasoactive intestinal peptide (VIP) is implicated in cutaneous active vasodilation in humans. VIP and the closely related pituitary adenylate cyclase activating peptide (PACAP) act through several receptor types: VIP through VPAC1 and VPAC2 receptors and PACAP through VPAC1, VPAC2, and PAC1 receptors. We examined participation of VPAC2 and/or PAC1 receptors in cutaneous vasodilation during heat stress by testing the effects of their specific blockade with PACAP6-38. PACAP6-38 dissolved in Ringers was administered by intradermal microdialysis at one forearm site while a control site received Ringers solution. Skin blood flow was monitored by laser-Doppler flowmetry (LDF). Blood pressure was monitored noninvasively and cutaneous vascular conductance (CVC) calculated. A 5- to 10-min baseline period was followed by approximately 70 min of PACAP6-38 (100 microM) perfusion at one site in normothermia and a 3-min period of body cooling. Whole body heating was then performed to engage cutaneous active vasodilation and was maintained until CVC had plateaued at an elevated level at all sites for 5-10 min. Finally, 58 mM sodium nitroprusside was perfused through both microdialysis sites to effect maximal vasodilation. No CVC differences were found between control and PACAP6-38-treated sites during normothermia (19 +/- 3%max untreated vs. 20 +/- 3%max, PACAP6-38 treated; P > 0.05 between sites) or cold stress (11 +/- 2%max untreated vs. 10 +/- 2%max, PACAP6-38 treated, P > 0.05 between sites). PACAP6-38 attenuated the increase in CVC during whole body heating when compared with untreated sites (59 +/- 3%max untreated vs. 46 +/- 3%max, PACAP6-38 treated, P < 0.05). We conclude that VPAC2 and/or PAC1 receptor activation is involved in cutaneous active vasodilation in humans.


Journal of Applied Physiology | 2012

Nitric oxide and receptors for VIP and PACAP in cutaneous active vasodilation during heat stress in humans

Dean L. Kellogg; Joan L. Zhao; Yubo Wu; John M. Johnson

VPAC2 receptors sensitive to vasoactive intestinal polypeptide (VIP) and pituitary adenylyl cyclase activating polypeptide (PACAP), PAC1 receptors sensitive to PACAP, and nitric oxide (NO) generation by NO synthase (NOS) are all implicated in cutaneous active vasodilation (AVD) through incompletely defined mechanisms. We hypothesized that VPAC2/PAC1 receptor activation and NO are synergistic and interdependent in AVD and tested our hypothesis by examining the effects of VPAC2/PAC1 receptor blockade with and without NOS inhibition during heat stress. The VPAC2/PAC1 antagonist, pituitary adenylate cyclase activating peptide 6-38 (PACAP6-38) and the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME) were administered by intradermal microdialysis. PACAP6-38, l-NAME, a combination of PACAP6-38 and l-NAME, or Ringers solution alone were perfused at four separate sites. Skin blood flow was monitored by laser-Doppler flowmetry at each site. Body temperature was controlled with water-perfused suits. Blood pressure was monitored by Finapres, and cutaneous vascular conductance (CVC) calculated (CVC = laser-Doppler flowmetry/mean arterial pressure). The protocol began with a 5- to 10-min baseline period without antagonist perfusion, followed by perfusion of PACAP6-38, l-NAME, or combined PACAP6-38 and l-NAME at the different sites in normothermia (45 min), followed by 3 min of whole body cooling. Whole body heating was then performed to induce heat stress and activate AVD. Finally, 58 mM sodium nitroprusside were perfused at all sites to effect maximal vasodilation for normalization of blood flow data. No significant differences in CVC (normalized to maximum) were found among Ringers PACAP6-38, l-NAME, or combined antagonist sites during normothermia (P > 0.05 among sites) or cold stress (P > 0.05 among sites). CVC responses at all treated sites were attenuated during AVD (P < 0.05 vs. Ringers). Attenuation was greater at l-NAME and combined PACAP6-38- and l-NAME-treated sites than at PACAP6-38 sites (P > 0.05). Because responses did not differ between l-NAME and combined treatment sites (P > 0.05), we conclude that VPAC2/PAC1 receptors require NO in series to effect AVD.


Journal of Applied Physiology | 2011

Antagonism of soluble guanylyl cyclase attenuates cutaneous vasodilation during whole body heat stress and local warming in humans

Dean L. Kellogg; Joan Liu Zhao; Yubo Wu; John M. Johnson

We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Cortical, thalamic, and hypothalamic responses to cooling and warming the skin in awake humans: A positron-emission tomography study

Gary F. Egan; John M. Johnson; Michael J. Farrell; Robin M. McAllen; Frank Zamarripa; Michael J. McKinley; Jack L. Lancaster; D. A. Denton; Peter T. Fox


Frontiers in Bioscience | 2010

Thermoregulatory and thermal control in the human cutaneous circulation.

John M. Johnson; Dean L. Kellogg


Proceedings of the National Academy of Sciences of the United States of America | 2006

Human medullary responses to cooling and rewarming the skin: A functional MRI study

Robin M. McAllen; Michael J. Farrell; John M. Johnson; David Trevaks; Leonie J. Cole; Michael J. McKinley; Graeme D. Jackson; D. A. Denton; Gary F. Egan

Collaboration


Dive into the John M. Johnson's collaboration.

Top Co-Authors

Avatar

Dean L. Kellogg

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

D. A. Denton

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Robin M. McAllen

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yubo Wu

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Zamarripa

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Joan Liu Zhao

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Peter T. Fox

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

David Trevaks

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge