Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John M. Mendenhall is active.

Publication


Featured researches published by John M. Mendenhall.


Developmental Biology | 2009

TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation.

Antonio Gonzalez; John M. Mendenhall; Yujia Huo; Alan Lloyd

A suite of epidermal characters in Arabidopsis is under the transcriptional control of a combinatorial complex containing WD repeat, bHLH and MYB proteins. Many genetic, molecular and biochemical means have been employed to identify and characterize a complete minimal set of complex members required for the trichome initiation, root hair spacing, anthocyanin production and seed coat tannin production pathways. In addition, the WD and bHLH proteins required for outer seed coat differentiation have been identified. However, until now the MYB complex member(s) required for this last WD-bHLH-MYB complex-dependent character have remained elusive. Here we identify two MYBs, AtMYB5 and TT2, as partially redundant in regulating this outer seed coat developmental process with MYB5 having the major role. MYB5 and TT2 are shown to be expressed in this outer seed coat domain. We also show that MYB5 has weak pleiotropic control over trichome development and tannin production and is also expressed in the appropriate places for these functions. TT8 and the downstream GL2 and TTG2 regulators of seed coat development are found to be downregulated in the MYB mutants. Although the TTG1-dependent R2R3 MYBs are considered to be highly pathway specific, identification of MYBs responsible for outer seed coat development allowed for the elucidation of previously undetected novel developmental pleiotropy among these elements.


Journal of Biomedical Optics | 2006

Dehydration mechanism of optical clearing in tissue

Christopher G. Rylander; Oliver F. Stumpp; Thomas E. Milner; Nathaniel J. Kemp; John M. Mendenhall; Kenneth R. Diller; Ashley J. Welch

Previous studies identified various mechanisms of light scattering reduction in tissue induced by chemical agents. Our results suggest that dehydration is an important mechanism of optical clearing in collagenous and cellular tissue. Photographic and optical coherence tomography images indicate that air-immersed skin and tendon specimens become similarly transparent to glycerol-immersed specimens. Transmission electron microscopy images reveal that dehydration causes individual scattering particles such as collagen fibrils and organelles to become more densely packed, but does not significantly alter size. A heuristic particle-interaction model predicts that the scattering particle volume fraction increase can contribute substantially to optical clearing in collagenous and cellular tissue.


computer vision and pattern recognition | 2010

Boundary Learning by Optimization with Topological Constraints

Viren Jain; Benjamin Bollmann; Mark Richardson; Daniel R. Berger; Moritz Helmstaedter; Kevin L. Briggman; Winfried Denk; Jared B. Bowden; John M. Mendenhall; Wickliffe C. Abraham; Kristen M. Harris; Narayanan Kasthuri; Kenneth J. Hayworth; Richard Schalek; Juan Carlos Tapia; Jeff W. Lichtman; H. Sebastian Seung

Recent studies have shown that machine learning can improve the accuracy of detecting object boundaries in images. In the standard approach, a boundary detector is trained by minimizing its pixel-level disagreement with human boundary tracings. This naive metric is problematic because it is overly sensitive to boundary locations. This problem is solved by metrics provided with the Berkeley Segmentation Dataset, but these can be insensitive to topo-logical differences, such as gaps in boundaries. Furthermore, the Berkeley metrics have not been useful as cost functions for supervised learning. Using concepts from digital topology, we propose a new metric called the warping error that tolerates disagreements over boundary location, penalizes topological disagreements, and can be used directly as a cost function for learning boundary detection, in a method that we call Boundary Learning by Optimization with Topological Constraints (BLOTC). We trained boundary detectors on electron microscopic images of neurons, using both BLOTC and standard training. BLOTC produced substantially better performance on a 1.2 million pixel test set, as measured by both the warping error and the Rand index evaluated on segmentations generated from the boundary labelings. We also find our approach yields significantly better segmentation performance than either gPb-OWT-UCM or multiscale normalized cut, as well as Boosted Edge Learning trained directly on our data.


Brain Research | 2003

Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat

Adriana A. Alcantara; Violeta Chen; Bruce E. Herring; John M. Mendenhall; Monica L. Berlanga

Striatal cholinergic interneurons located in the dorsal striatum and nucleus accumbens are amenable to influences of the dopaminergic mesolimbic pathway, which is a pathway involved in reward and reinforcement and targeted by several drugs of abuse. Dopamine and acetylcholine neurotransmission and their interactions are essential to striatal function, and disruptions to these systems lead to a variety of clinical disorders. Dopamine regulates acetylcholine release through dopamine receptors that are localized directly on striatal cholinergic interneurons. The dopamine D2 receptor, which attenuates acetylcholine release, has been implicated in drug relapse and is targeted by therapeutic drugs that are used to treat a variety of neurological disorders including Tourette Syndrome, Parkinsons disease and schizophrenia. The present study provides the first direct evidence for the localization of dopamine D2 receptors on striatal cholinergic interneurons of the rat brain using dual labeling immunocytochemistry procedures. Using light microscopy, dopamine D2 receptors were localized on the cell somata and dendritic and axonal processes of striatal cholinergic interneurons in the dorsal striatum and nucleus accumbens of the rat brain. These findings provide a foundation for understanding the specific roles that cholinergic neuronal network systems and interacting dopaminergic signaling pathways play in striatal function and in a variety of clinical disorders including drug abuse and addiction.


Experimental Biology and Medicine | 2007

Novel localization of NMDA receptors within neuroendocrine gonadotropin-releasing hormone terminals

John M. Mendenhall; Shawn B. Bratton; Twethida Oung; William G.M. Janssen; John H. Morrison; Andrea C. Gore

About 1000 hypothalamic neurons synthesize and release gonadotropin-releasing hormone (GnRH), the master molecule of reproduction in all mammals. At the level of the median eminence at the base of the brain, where GnRH and other hypothalamic releasing hormones are secreted into the capillary system leading to the anterior pituitary gland, there is non-synaptic regulation of neurohormone release by a number of central neurotransmitters. For example, glutamate, the major excitatory amino acid in the brain, directly regulates GnRH release from nerve terminals via NMDA receptors (NMDARs). Moreover, the effects of glutamate action on GnRH secretion are potentiated by estrogens, and this relates to the physiologic control of ovulation by the hypothalamus. We sought to determine the ultrastructural relationship between GnRH neuroterminals and NMDARs, and this regulation by estradiol. Using immunofluorescent confocal microscopy, postembedding immunogold electron microscopy, fractionation, and Western blotting, we demonstrated: (i) GnRH is localized in large dense-core vesicles of neurosecretory profiles/terminals, (ii) the NMDAR1 subunit is found primarily on large dense-core vesicles of neurosecretory profiles/terminals, (iii) there is extensive colocalization of GnRH and NMDAR1 on the same vesicles, and (iv) estradiol modestly but significantly alters the distribution of NMDAR1 in GnRH neuroterminals by increasing expression of NMDAR1 on large dense-core vesicles. Western blots of fractionated median eminence support the presence of NMDAR1 in subcellular fractions containing large dense-core vesicles. These data are the first to show the presence of the NMDAR on neuroendocrine secretory vesicles, its co-expression with GnRH, and its regulation by estradiol. The results provide a novel anatomical site for the NMDAR and may represent a new mechanism for the regulation of GnRH release.


PLOS ONE | 2013

Automated Transmission-Mode Scanning Electron Microscopy (tSEM) for Large Volume Analysis at Nanoscale Resolution

Masaaki Kuwajima; John M. Mendenhall; Laurence F. Lindsey; Kristen M. Harris

Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.


The Journal of Comparative Neurology | 2014

Dynamics of nascent and active zone ultrastructure as synapses enlarge during long-term potentiation in mature hippocampus.

Maria Elizabeth Bell; Jennifer N. Bourne; Michael A. Chirillo; John M. Mendenhall; Masaaki Kuwajima; Kristen M. Harris

Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long‐term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta‐burst stimulation, and comparisons were made with control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post‐induction and to perfusion‐fixed hippocampus in vivo. Nascent zones were present at the edges of ∼35% of synapses in perfusion‐fixed hippocampus and as many as ∼50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense‐core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased, without significant change in synapse area, suggesting that presynaptic vesicles were recruited to preexisting nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed glutamate receptors in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170 ± 5 nm in perfusion‐fixed hippocampus to 251 ± 4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that decrease in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP. J. Comp. Neurol. 522:3861–3884, 2014.


Synapse | 2011

Cocaine- and morphine-induced synaptic plasticity in the nucleus accumbens

Adriana A. Alcantara; Helen Y. Lim; Christopher E. Floyd; Juanita Garces; John M. Mendenhall; Chelsea L. Lyons; Monica L. Berlanga

The critical brain areas and molecular mechanisms involved in drug abuse and dependence have been extensively studied. Drug‐induced persistent behaviors such as sensitization, tolerance, or relapse, however, far outlast any previously reported mechanisms. A challenge in the field of addiction, therefore, has been to identify drug‐induced changes in brain circuitry that may subserve long‐lasting changes in behavior. This study examined behavioral changes and electron microscopic evidence of altered synaptic connectivity within the nucleus accumbens (NAc) following repeated administration of cocaine or morphine. The unbiased quantitative stereological physical disector method was used to estimate the number of synapses per neuron. Increases in the synapse‐to‐neuron ratio were found in the NAc shell of cocaine‐treated (49.1%) and morphine‐treated (55.1%) rats and in the NAc core of cocaine‐treated animals (49.1%). This study provides direct ultrastructural evidence of drug‐induced synaptic plasticity and identifies synaptic remodeling as a potential neural substrate underlying drug‐induced behavioral sensitization. Synapse, 2011.


The Journal of Comparative Neurology | 2009

Three-dimensional properties of GnRH neuroterminals in the median eminence of young and old rats.

John M. Mendenhall; Monique Monita; Andrea C. Gore

The decapeptide gonadotropin‐releasing hormone (GnRH), which regulates reproduction in all vertebrates, is stored in, and secreted from, large dense‐core secretory vesicles in nerve terminals in the median eminence. GnRH is released from these terminals with biological rhythms that are critical for the maintenance of normal reproduction. During reproductive aging in female rats, there is a loss of GnRH pulses and a diminution of the GnRH surge. However, information about the specific role of GnRH nerve terminals is lacking, particularly in the context of aging. We sought to gain novel ultrastructural information about GnRH neuroterminals by performing three‐dimensional (3D) reconstructions of GnRH neuroterminals and their surrounding microenvironment in the median eminence of young (4–5 months) and old (22–24 months) ovariectomized Sprague–Dawley female rats. Median eminence tissues were freeze‐plunge embedded and serial ultrathin sections were collected on slot grids for immunogold labeling of GnRH immunoreactivity. Sequential images were used to create 3D models of GnRH terminals. These reconstructions provided novel perspectives into the morphological properties of GnRH terminals and their neural and glial environment. We also noted that the cytoarchitectural features of the median eminence became disorganized with aging. Quantitative measures showed a significant decrease in the apposition between GnRH terminal membranes and glial cells. Our data suggest reproductive aging in rats is characterized by structural organizational changes to the GnRH terminal microenvironment in the median eminence. J. Comp. Neurol. 517:284–295, 2009.


Molecular and Cellular Neuroscience | 2007

The atypical cadherin flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila.

Hong Bao; Monica L. Berlanga; Mingshan Xue; Sara M. Hapip; Richard W. Daniels; John M. Mendenhall; Adriana A. Alcantara; Bing Zhang

The formation of synaptic connections with target cells and maintenance of axons are highly regulated and crucial for neuronal function. The atypical cadherin and G-protein-coupled receptor Flamingo and its orthologs in amphibians and mammals have been shown to regulate cell polarity, dendritic and axonal growth, and neural tube closure. However, the role of Flamingo in synapse formation and function and in axonal health remains poorly understood. Here we show that fmi mutations cause a significant increase in the number of ectopic synapses on muscles and result in the formation of novel en passant synapses along axons, and unique presynaptic varicosities, including active zones, within axons. The fmi mutations also cause defective synaptic responses in a small subset of muscles, an age-dependent loss of muscle innervation and a drastic degeneration of axons in 3rd instar larvae without an apparent loss of neurons. Neuronal expression of Flamingo rescues all of these synaptic and axonal defects and larval lethality. Based on these observations, we propose that Flamingo is required in neurons for synaptic target selection, synaptogenesis, the survival of axons and synapses, and adult viability. These findings shed new light on a possible role for Flamingo in progressive neurodegenerative diseases.

Collaboration


Dive into the John M. Mendenhall's collaboration.

Top Co-Authors

Avatar

Kristen M. Harris

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea C. Gore

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jared B. Bowden

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jennifer N. Bourne

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Maria Elizabeth Bell

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Michael A. Chirillo

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Monica L. Berlanga

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana A. Alcantara

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge