Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John M. Pandolfi is active.

Publication


Featured researches published by John M. Pandolfi.


Science | 2011

Projecting coral reef futures under global warming and ocean acidification

John M. Pandolfi; Sean R. Connolly; Dustin J. Marshall; Anne L. Cohen

Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.


Earth and Planetary Science Letters | 1996

Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records

John Chappell; Akio Omura; Tezer M. Esat; Malcolm T. McCulloch; John M. Pandolfi; Yoko Ota; Brad Pillans

A major discrepancy between the Late Quaternary sea level changes derived from raised coral reef terraces at the Huon Peninsula in Papua New Guinea and from oxygen isotopes in deep sea cores is resolved. The two methods agree closely from 120 ka to 80 ka and from 20 ka to 0 ka (ka = 1000 yr before present), but between 70 and 30 ka the isotopic sea levels are 20–40 m lower than the Huon Peninsula sea levels derived in earlier studies. New, high precision U-series age measurements and revised stratigraphic data for Huon Peninsula terraces aged between 30 and 70 ka now give similar sea levels to those based on deep sea oxygen isotope data planktonic and benthic δ18O data. Using the sea level and deep sea isotopic data, oxygen isotope ratios are calculated for the northern continental ice sheets through the last glacial cycle and are consistent with results from Greenland ice cores. The record of ice volume changes through the last glacial cycle now appears to be reasonably complete.


Science | 2011

The Pace of Shifting Climate in Marine and Terrestrial Ecosystems

Michael T. Burrows; David S. Schoeman; Lauren B. Buckley; Pippa J. Moore; Elvira S. Poloczanska; Keith Brander; Christopher J. Brown; John F. Bruno; Carlos M. Duarte; Benjamin S. Halpern; Johnna Holding; Carrie V. Kappel; Wolfgang Kiessling; Mary I. O'Connor; John M. Pandolfi; Camille Parmesan; Franklin B. Schwing; William J. Sydeman; Anthony J. Richardson

Ecologically relevant measures of contemporary global climate change can predict species distributions and vulnerabilities. Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts.


Nature | 2017

Global warming and recurrent mass bleaching of corals

Terry P. Hughes; James T. Kerry; Mariana Álvarez-Noriega; Jorge G. Álvarez-Romero; Kristen D. Anderson; Andrew Baird; Russell C. Babcock; Maria Beger; David R. Bellwood; Ray Berkelmans; Tom C. L. Bridge; Ian R. Butler; Maria Byrne; Neal E. Cantin; Steeve Comeau; Sean R. Connolly; Graeme S. Cumming; Steven J. Dalton; Guillermo Diaz-Pulido; C. Mark Eakin; Will F. Figueira; James P. Gilmour; Hugo B. Harrison; Scott F. Heron; Andrew S. Hoey; Jean Paul A. Hobbs; Mia O. Hoogenboom; Emma V. Kennedy; Chao-Yang Kuo; Janice M. Lough

During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Science | 2008

Hopping Hotspots: Global Shifts in Marine Biodiversity

Willem Renema; David R. Bellwood; Juan C. Braga; K. Bromfield; Robert Hall; Kenneth G. Johnson; Peter Lunt; Christopher P. Meyer; L. B. McMonagle; Robert J. Morley; Aaron O'Dea; Jonathan A. Todd; Frank P. Wesselingh; Moyra E.J. Wilson; John M. Pandolfi

Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.


Nature | 2014

Geographical limits to species-range shifts are suggested by climate velocity

Michael T. Burrows; David S. Schoeman; Anthony J. Richardson; Jorge García Molinos; Ary A. Hoffmann; Lauren B. Buckley; Pippa J. Moore; Christopher J. Brown; John F. Bruno; Carlos M. Duarte; Benjamin S. Halpern; Ove Hoegh-Guldberg; Carrie V. Kappel; Wolfgang Kiessling; Mary I. O'Connor; John M. Pandolfi; Camille Parmesan; William J. Sydeman; Simon Ferrier; Kristen J. Williams; Elvira S. Poloczanska

The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the ‘business as usual’ climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.


Paleobiology | 1996

Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea; constancy during global change

John M. Pandolfi

One of the most intriguing questions in community ecology remains unanswered: Are ecological communities open assemblages with each species reacting individually ro environmental change, or are they integrated units consisting of multispecies assemblages acting in concert? I address this question for marine organisms by examining the taxonomic composition and diversity of Indo-Pacific reef coral communities that have undergone repeated global change between 125 and 30 Ka (thousand years before present)


Ecology Letters | 2013

Predicting evolutionary responses to climate change in the sea.

Philip L. Munday; Robert R. Warner; Keyne Monro; John M. Pandolfi; Dustin J. Marshall

An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change.


Science | 2017

Biodiversity redistribution under climate change : Impacts on ecosystems and human well-being

Gt Pecl; Miguel B. Araújo; Johann D. Bell; Julia L. Blanchard; Timothy C. Bonebrake; I-Ching Chen; Timothy D. Clark; Robert K. Colwell; Finn Danielsen; Birgitta Evengård; Lorena Falconi; Simon Ferrier; Sd Frusher; Raquel A. Garcia; Roger B. Griffis; Alistair J. Hobday; Charlene Janion-Scheepers; Marta A. Jarzyna; Sarah Jennings; Jonathan Lenoir; Hlif I. Linnetved; Victoria Y. Martin; Phillipa C. McCormack; Jan McDonald; Nicola J. Mitchell; Tero Mustonen; John M. Pandolfi; Nathalie Pettorelli; E. E. Popova; Sharon A. Robinson

Consequences of shifting species distributions Climate change is causing geographical redistribution of plant and animal species globally. These distributional shifts are leading to new ecosystems and ecological communities, changes that will affect human society. Pecl et al. review these current and future impacts and assess their implications for sustainable development goals. Science, this issue p. eaai9214 BACKGROUND The success of human societies depends intimately on the living components of natural and managed systems. Although the geographical range limits of species are dynamic and fluctuate over time, climate change is impelling a universal redistribution of life on Earth. For marine, freshwater, and terrestrial species alike, the first response to changing climate is often a shift in location, to stay within preferred environmental conditions. At the cooler extremes of their distributions, species are moving poleward, whereas range limits are contracting at the warmer range edge, where temperatures are no longer tolerable. On land, species are also moving to cooler, higher elevations; in the ocean, they are moving to colder water at greater depths. Because different species respond at different rates and to varying degrees, key interactions among species are often disrupted, and new interactions develop. These idiosyncrasies can result in novel biotic communities and rapid changes in ecosystem functioning, with pervasive and sometimes unexpected consequences that propagate through and affect both biological and human communities. ADVANCES At a time when the world is anticipating unprecedented increases in human population growth and demands, the ability of natural ecosystems to deliver ecosystem services is being challenged by the largest climate-driven global redistribution of species since the Last Glacial Maximum. We demonstrate the serious consequences of this species redistribution for economic development, livelihoods, food security, human health, and culture, and we document feedbacks on climate itself. As with other impacts of climate change, species range shifts will leave “winners” and “losers” in their wake, radically reshaping the pattern of human well-being between regions and different sectors and potentially leading to substantial conflict. The pervasive impacts of changes in species distribution transcend single systems or dimensions, with feedbacks and linkages between multiple interacting scales and through whole ecosystems, inclusive of humans. We argue that the negative effects of climate change cannot be adequately anticipated or prepared for unless species responses are explicitly included in decision-making and global strategic frameworks. OUTLOOK Despite mounting evidence for the pervasive and substantial impacts of a climate-driven redistribution of Earth’s species, current global goals, policies, and international agreements fail to account for these effects. With the predicted intensification of species movements and their diverse societal and environmental impacts, awareness of species “on the move” should be incorporated into local, regional, and global assessments as standard practice. This will raise hope that future targets—whether they be global sustainability goals, plans for regional biodiversity maintenance, or local fishing or forestry harvest strategies—can be achievable and that society is prepared for a world of universal ecological change. Human society has yet to appreciate the implications of unprecedented species redistribution for life on Earth, including for human lives. Even if greenhouse gas emissions stopped today, the responses required in human systems to adapt to the most serious effects of climate-driven species redistribution would be massive. Meeting these challenges requires governance that can anticipate and adapt to changing conditions, as well as minimize negative consequences. As the global climate changes, human well-being, ecosystem function, and even climate itself are increasingly affected by the shifting geography of life. Climate-driven changes in species distributions, or range shifts, affect human well-being both directly (for example, through emerging diseases and changes in food supply) and indirectly (by degrading ecosystem health). Some range shifts even create feedbacks (positive or negative) on the climate system, altering the pace of climate change. Distributions of Earth’s species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals.


Trends in Ecology and Evolution | 2012

Extinctions in ancient and modern seas

Paul G. Harnik; Heike K. Lotze; Sean C. Anderson; Zoe V. Finkel; Seth Finnegan; David R. Lindberg; Lee Hsiang Liow; Rowan Lockwood; Craig R. McClain; Jenny L. McGuire; Aaron O’Dea; John M. Pandolfi; Carl Simpson; Derek P. Tittensor

In the coming century, life in the ocean will be confronted with a suite of environmental conditions that have no analog in human history. Thus, there is an urgent need to determine which marine species will adapt and which will go extinct. Here, we review the growing literature on marine extinctions and extinction risk in the fossil, historical, and modern records to compare the patterns, drivers, and biological correlates of marine extinctions at different times in the past. Characterized by markedly different environmental states, some past periods share common features with predicted future scenarios. We highlight how the different records can be integrated to better understand and predict the impact of current and projected future environmental changes on extinction risk in the ocean.

Collaboration


Dive into the John M. Pandolfi's collaboration.

Top Co-Authors

Avatar

Jian-xin Zhao

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jeremy B. C. Jackson

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Yuexing Feng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Kiessling

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Richardson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tara R. Clark

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Michael T. Burrows

Scottish Association for Marine Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge