John M. Sarvey
Uniformed Services University of the Health Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John M. Sarvey.
The Journal of Neuroscience | 2001
Yang V. Li; Christopher Hough; Christopher J. Frederickson; John M. Sarvey
The mammalian CNS contains an abundance of chelatable Zn2+ sequestered in the vesicles of glutamatergic terminals. These vesicles are particularly numerous in hippocampal mossy fiber synapses of the hilar and CA3 regions. Our recent observation of frequency-dependent Zn2+ release from mossy fiber synaptic terminals and subsequent entry into postsynaptic neurons has prompted us to investigate the role of synaptically released Zn2+ in the induction of long-term potentiation (LTP) in field CA3 of the hippocampus. The rapid removal of synaptically released Zn2+ with the membrane-impermeable Zn2+ chelator CaEDTA (10 mm) blocked induction of NMDA receptor-independent mossy fiber LTP by high-frequency electrical stimulation (HFS) in rat hippocampal slices. Mimicking Zn2+ release by bath application of Zn2+ (50–100 μm) without HFS induced a long-lasting potentiation of synaptic transmission that lasted more than 3 hr. Moreover, our experiments indicate the effects of Zn2+ were not attributable to its interaction with extracellular membrane proteins but required its entry into presynaptic or postsynaptic neurons. Co-released glutamate is also essential for induction of LTP under physiological conditions, in part because it allows Zn2+ entry into postsynaptic neurons. These results indicate that synaptically released Zn2+, acting as a second messenger, is necessary for the induction of LTP at mossy fiber→CA3 synapses of hippocampus.
Neuroscience Letters | 1990
Edward C. Burgard; John M. Sarvey
Bath application of two different concentrations of muscarine produced two different effects on evoked responses in the dentate gyrus of rat hippocampal slices. A concentration of 1 microM muscarine did not affect the evoked population spike or excitatory postsynaptic potential (EPSP), but facilitated the induction of LTP. In contrast, a concentration of 10 microM muscarine depressed both the population spike and EPSP, but had no effect on LTP induction. The M1 muscarinic receptor antagonist pirenzepine (1 microM) blocked the muscarine-induced facilitation of LTP, but had no effect on the depression of evoked responses. These data suggest that activation of M1 receptors can facilitate the induction of LTP.
Brain Research | 1985
Patric K. Stanton; John M. Sarvey
The mechanism of action of norepinephrine (NE)-induced potentiation of the population spike in the dentate gyrus of hippocampal slices was examined and compared with NE effects in field CA1. NE-induced potentiation was confined to the dentate gyrus, where slices perfused for 30 min with concentrations of NE as low as 5 microM exhibited potentiation of the perforant path evoked population spike. Potentiation began within 15 min, and lasted many hours after NE was washed out. Experiments where slices were pre-incubated with the protein synthesis inhibitor emetine indicated that there are two distinct phases to NE-induced potentiation. The initial short-term NE-induced potentiation (NEP) seen during NE application was not affected by a 30 min pre-incubation with emetine, whereas the long-lasting potentiation (NELLP) which persists after NE washout was completely blocked by emetine at a concentration which we have previously shown to be effective in blocking hippocampal long-term potentiation (LTP). Additional experiments indicated that both phases of NE-induced potentiation were completely blocked by the beta-antagonist propranolol and the beta 1-antagonist metoprolol. Furthermore, pre-incubation of slices with the direct-acting adenylate cyclase stimulant forskolin shifted the dose-response curves for both phases of NE-induced potentiation to the left. These results suggest that NE-induced potentiation is probably mediated by beta 1-receptor stimulation of adenylate cyclase. We have previously shown an importance for beta 1-receptor stimulation of adenylate cyclase in the production of LTP in the dentate. Thus, these results demonstrate a number of similarities between hippocampal LTP and NELLP in the dentate gyrus.
The Journal of Comparative Neurology | 1996
Clive R. Bramham; Teresa Southard; John M. Sarvey; Miles Herkenham; Linda S. Brady
Induction of long‐term potentiation (LTP) in the dentate gyrus of awake rats triggered a rapid (2 hour) elevation in tyrosine kinase receptor (trkB and trkC) gene expression and a delayed (6–24 hour) increase in brain‐derived neurotrophic factor (BDNF) and neurotrophin‐3 (NT‐3) gene expression. Depending on the mRNA species, LTP induction led to highly selective unilateral or bilateral increases in gene expression. Specifically, trkB and NT‐3 mRNA elevations were restricted to granule cells in the ipsilateral dentate gyrus, whereas bilateral increases in trkC, BDNF, and nerve growth factor (NGF) mRNA levels occurred in granule cells and hippocampal pyramidal cells. Both unilateral and bilateral changes in gene expression were N‐methyl‐D‐aspartate (NMDA) receptor‐dependent and LTP‐specific. Bilateral electrophysiological recordings demonstrated that LTP was unilaterally induced; this was corroborated by a dramatic unilateral increase in the expression of the immediate early gene zif/268, a marker for LTP, restricted to the ipsilateral granule cells. The results indicate that LTP triggers an interhemispheric communication manifested as selective, bilateral increases in gene expression at multiple sites in the hippocampal network. Furthermore, our findings suggest that physiological plastic changes in the adult brain may involve coordinated, time‐dependent regulation of multiple neurotrophin and trk receptor genes.
Brain Research Bulletin | 1987
Patric K. Stanton; John M. Sarvey
Hippocampal slices from norepinephrine (NE)-depleted rats exhibited marked reductions in long-term potentiation (LTP) of both the population spike and dendritic EPSP in the dentate gyrus. In contrast, depletion of serotonin (5-hydroxytryptamine, 5-HT) had no effect on either population spike or EPSP-LTP. In addition, superfusion of slices with NE produced potentiation of both the granule cell population spike and dendritic EPSP which persisted long after NE washout. These data support a role for NE in regulating long-term plasticity of both granule cell action potential firing and dendritic EPSPs.
Journal of Neuroscience Methods | 1989
John M. Sarvey; Edward C. Burgard; Gregory Decker
Long-term potentiation (LTP) is an example of activity-dependent plasticity that was discovered in the hippocampal formation. There is growing evidence that LTP not only is a useful model for mnemonic processes, but also may represent the cellular substrate for at least some kinds of learning and memory. The hippocampal slice preparation has proven exceptionally useful in pharmacological studies of possible mechanisms of LTP. A slice remains viable and stable for several hours, and known concentrations of drugs in the bathing medium can be added and then washed out. Drugs can also be applied under visual guidance from micropipettes to discrete neuronal regions, an accomplishment that is aided by the lamellar organization of the hippocampus. Electrical stimulation of the perforant path (PP) in the molecular layer of the dentate gyrus produces a monosynaptic excitatory postsynaptic potential (EPSP) and action potential, which can be recorded extracellularly as a population EPSP and population spike, respectively. Presentation of a high-frequency train (HFT; 100 Hz X 1 s) to the PP results in a long-lasting (greater than 30 min) potentiation of the maximal EPSP slope and of the population spike amplitude. Similarly, exposure of the slice to norepinephrine (e.g. 20 microM for 30 min) results in a long-lasting potentiation (LLP) of both EPSP and population spike (Stanton and Sarvey (1987) Brain Res. Bull., 18: 115). No such LLP was seen in field CA1 following NE application (Stanton and Sarvey (1985) Brain Res., 361: 276). beta-Adrenergic antagonists, such as propranolol, inhibit both LTP and NE-induced LLP in dentate (Stanton and Sarvey, J. Neurosci., 5: 2169 (1985); Stanton and Sarvey (1985) Brain Res., 361: 276). Cyclic AMP levels are increased by either an HFT or NE (Stanton and Sarvey (1985) Brain Res., 358: 343). Thus, NE, acting through a beta-receptor, appears to be both necessary and sufficient to produce long-lasting enhancement of synaptic responses. Finally, inhibitors of protein synthesis, such as emetine, also block both LTP and NE-induced LLP (Stanton and Sarvey, J. Neurosci., (1984) 4: 3080; Stanton and Sarvey (1985) Brain Res., 361: 276). The N-methyl-D-aspartate (NMDA) excitatory amino acid receptor subtype appears to play a role in a number of forms of neuronal plasticity. Bath-application of a 1 microM concentration of the NMDA antagonists D-2-amino-5-phosphonavaleric acid (AVP) or 3-((+/-)2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) blocked both LTP and NE-induced LLP in the dentate gyrus.(ABSTRACT TRUNCATED AT 400 WORDS)
The Journal of Neuroscience | 1996
Clive R. Bramham; John M. Sarvey
Opioid peptides costored with glutamate have emerged as powerful regulators of long-term potentiation (LTP) induction in several hippocampal pathways. The objectives of the present study were twofold: (1) to identify which opioid receptor types (μ, δ, or κ) regulate LTP induction at lateral perforant path–granule cell synapses and (2) to test the hypothesis that endogenous opioids regulate LTP induction via modulation of GABAergic inhibition. LTP of lateral perforant path-evoked field EPSPs was induced selectively by high-frequency stimulation applied to the outer third of the molecular layer of the dentate gyrus of rat hippocampal slices. No changes in medial perforant path responses occurred. LTP was blocked when high-frequency stimulation was applied in the presence of the μ receptor antagonist CTAP, the selective δ-1 receptor antagonist BNTX, or the δ-1 and δ-2 receptor antagonist naltrindole. By contrast, the κ-1 opioid receptor antagonist NBNI had no effect on LTP induction. The role of GABAergic inhibition was investigated by comparing the effect of naloxone on LTP induction in slices maintained in standard buffer and picrotoxin-containing buffer. Naloxone blocked LTP in standard buffer, whereas normal LTP was induced in picrotoxin-treated, disinhibited slices. Finally, NMDA receptor blockade completely inhibited LTP in both standard and disinhibited slices. The results show that μ and δ-1 opioid receptors regulate LTP induction and that this mechanism critically depends on GABAergic inhibition. A key issue then becomes how endogenous opioids fine-tune the activity of intact inhibitory networks in the dentate gyrus, effectively gating synaptic plasticity in specific dendritic strata.
Neuroreport | 1997
Clive R. Bramham; Kristina Bacher-Svendsen; John M. Sarvey
NOREPINEPHRINE induces an activity-independent long-lasting depression of synaptic transmission in the lateral perforant path input to dentate granule cells, whereas high frequency stimulation induces activity-dependent long-term potentiation (LTP). We investigated the role of endogenous activation of β-adrenergic receptors in LTP of the lateral and medial perforant paths under conditions affording selective stimulation of these pathways in the rat hippo-campal slice. Propranolol (1 μM), a β-receptor antagonist, blocked LTP induction of both lateral and medial perforant path-evoked field excitatory postsynaptic potentials. The results indicate a broad requirement for norepinephrine in different types of synaptic plasticity, including activity-independent depression and activity-dependent LTP in the lateral perforant path.
Neuroscience | 2004
G Wei; Christopher Hough; Yang V. Li; John M. Sarvey
The mammalian CNS contains an abundance of chelatable zinc that is sequestered in the vesicles of glutamatergic presynaptic terminals and co-released with glutamate. Considerable Zn(2+) is also released during cerebral ischemia and reperfusion (I/R) although the mechanism of this release has not been elucidated. We report here the real time observation of increase of the concentration of extracellular Zn(2+) ([Zn(2+)](o)), accompanied by a rapid increase of intracellular free Zn(2+)concentration, in the areas of dentate gyrus (DG), CA1 and CA3 in acute rat hippocampus slices during ischemia simulated by deprivation of oxygen and glucose (OGD) followed by reperfusion with normal artificial cerebrospinal fluid. A brief period of OGD caused a sustained increase of [Zn(2+)](o). Subsequent reperfusion with oxygenated medium containing glucose resulted in a further increase of [Zn(2+)](o). Longer periods of OGD caused greater increases of [Zn(2+)](o,) and subsequent reperfusion caused still further increases of [Zn(2+)](o,) regardless of OGD duration. The Zn(2+) chelator CaEDTA (10 mM) significantly reduced the increase of [Zn(2+)] induced by OGD and reperfusion. Significant regional differences of [Zn(2+)](o) over the areas of the DG, CA1 and CA3 were not observed during I/R. Neither sodium channel blockade by tetrodotoxin (2 microM), perfusion with nominally calcium-free medium nor anatomical disassociation of the DG, CA1 and CA3 regions from one another by lesioning affected the increase of [Zn(2+)](o). The non-specific nitric oxide synthase (NOS) inhibitor, Nomega-nitro-l-arginine methyl ester (1 mM), however, blocked the increase of [Zn(2+)](o) during ischemia and reperfusion. The data indicate the important role of NO in causing the release of Zn(2+) during I/R and suggest that NOS inhibitors may be used to reduce Zn(2+)-induced neuronal injury.
Brain Research | 1989
Edward C. Burgard; Gregory Decker; John M. Sarvey
In the in vitro rat dentate gyrus, norepinephrine-induced long-lasting potentiation (NELLP) and long-term potentiation (LTP) of responses to perforant path stimulation were blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists, D(-)-2-amino-5-phosphonovaleric acid (D(-)APV) and 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP). CPP and D(-)APV, but not L(+)APV, also depressed the orthodromic population spike but not the antidromic spike, which suggests that these receptors may function in low-frequency evoked activity of granule cells. We conclude that NELLP, like LTP in the dentate gyrus, requires NMDA receptor activation.