Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Maingi is active.

Publication


Featured researches published by John Maingi.


European Journal of Agronomy | 2001

Nitrogen fixation by common bean (Phaseolus vulgaris L.) in pure and mixed stands in semi-arid south-east Kenya

John Maingi; Chris A. Shisanya; Nkanata Mburugu Gitonga; Berthold Hornetz

Research was carried out in the field on the effect of intercropping common bean and maize crops in a semi-arid zone of south-east Kenya over two rainy seasons in 1997. The experimental design was a randomised complete block design with eight treatments replicated four times. Significant differences were observed in total plant dry weight by the different treatments in pure stands, 21 days after emergence with higher values under mixed cropping system in common beans. However, at 42 days after emergence, plant dry weights in uninoculated common bean pure stands with N application were significantly higher than under other treatments. Common bean yields were significantly reduced by the maize intercrop. The inoculated common bean and N application treatment recorded the largest seed dry weights and subsequently yields per hectare. These findings suggest that intercropping common beans and maize considerably suppresses the yield of the former under the semi-arid conditions of south-east Kenya. Inoculation of common bean with the commercially available Rhizobium strain 446 on the other hand was effective and improved yields. Soil analysis of the experimental plots before and after one cropping season indicated that common beans increased N slightly or maintained it at the pre-planting levels. This was unlike the pure maize plots where there was a marked decline in soil N. There was however, a marked increase in soil phosphorus in all treatment plots.


International Scholarly Research Notices | 2014

Symbiotic Efficiency of Native Rhizobia Nodulating Common Bean (Phaseolus vulgaris L.) in Soils of Western Kenya.

Fanuel Kawaka; Mathews M. Dida; Peter Opala; Omwoyo Ombori; John Maingi; Newton Osoro; Morris Muthini; Alice Amoding; Dative Mukaminega; John Muoma

This study was conducted to determine the abundance and symbiotic efficiency of native rhizobia nodulating common bean in Kisumu and Kakamega, Kenya. Soil sampling was carried out in three farms that had been used for growing common bean for at least two seasons and one fallow land with no known history of growing common bean or inoculation. Abundance of soil rhizobia and symbiotic efficiency (SE) were determined in a greenhouse experiment. Native rhizobia populations ranged from 3.2 × 101 to 3.5 × 104 cells per gram of soil. Pure bacterial cultures isolated from fresh and healthy root nodules exhibited typical characteristics of Rhizobium sp. on yeast extract mannitol agar media supplemented with Congo red. Bean inoculation with the isolates significantly (p < 0.05) increased the shoot dry weight and nitrogen (N) concentration and content. The SE of all the native rhizobia were higher when compared to a reference strain, CIAT 899 (67%), and ranged from 74% to 170%. Four isolates had SE above a second reference strain, Strain 446 (110%). Our results demonstrate the presence of native rhizobia that are potentially superior to the commercial inoculants. These can be exploited to enhance bean inoculation programmes in the region.


British Journal of Applied Science and Technology | 2014

Morphological Assessment and Effectiveness of Indigenous Rhizobia Isolates that Nodulate P. vulgaris in Water Hyacinth Compost Testing Field in Lake Victoria Basin

Omwoyo Ombori; Allan Jalemba Mgutu; Morris Muthini; John Maingi; John Muoma; Alice Amoding; Dative Mukaminega; Newton Osoro

Aims: The study was aimed at isolating, identifying and assessing the effectiveness of indigenous rhizobia nodulating P. vulgaris in Lake Victoria Basin (LVB). Study Design: Randomized complete block design. Place and Duration of Study: Soil and nodule samples were collected from Kisumu (Kenya); Kabanyolo (Uganda) and Nyabarongo (Rwanda). Field experiments: Kisumu (Kenya). Lab and greenhouse experiments: Department of Plant and Microbial Sciences Kenyatta University (Kenya) and Makerere University (Uganda). Research was carried out between January 2012 and April 2013. Original Research Article British Journal of Applied Science & Technology, 4(5): 718-738, 2014 719 Methodology: Rhizobia were isolated from nodules obtained from P. vulgaris (rose coco variety) plants planted in the LVB water hyacinth compost trial fields and whole soil trapping experiments in the greenhouse using soil obtained from the LVB. The isolates were characterized using morphological features. Isolates from each group were used in authentication using the infection technique. Results: One hundred and twenty eight isolates were obtained from the trapping experiments and placed into nine groups based on their morphological characteristics. Four hundred and seventy two isolates were obtained from the nodules of the P. vulgaris grown in soils amended with water hyacinth compost and were placed into sixteen groups. The isolates varied in their morphological characteristics. There was a significant difference in the infectiveness and effectiveness of the representative rhizobia isolates. Conclusion: The studies revealed that rhizobia isolates from Lake Victoria are different morphologically. Authentication experiments, confirmed that the majority of the isolates were rhizobia due to their ability to infect the host plant P. vulgaris. All representative isolates varied in their ability to infect and fix nitrogen. Isolates that are more effective compared to the commercial Rhizobium leguminosarum biovar phaseoli strain 446 were isolated in this study. The effective indigenous rhizobia have therefore the potential of being sources of inocula for P. vulgaris.


International Journal of Agronomy | 2016

Elucidating the Potential of Native Rhizobial Isolates to Improve Biological Nitrogen Fixation and Growth of Common Bean and Soybean in Smallholder Farming Systems of Kenya

Ernest Wandera Ouma; Anne Mercy Asango; John Maingi; Ezekiel Mugendi Njeru

Identification of effective indigenous rhizobia isolates would lead to development of efficient and affordable rhizobia inoculants. These can promote nitrogen fixation in smallholder farming systems of Kenya. To realize this purpose, two experiments were conducted under greenhouse conditions using two common bean cultivars; Mwezi moja (bush type) and Mwitemania (climbing type) along with soybean cultivar SB 8. In the first experiment, the common bean cultivars were treated with rhizobia inoculants including a consortium of native isolates, commercial isolate (CIAT 899), a mixture of native isolates and CIAT 899, and a control with no inoculation. After 30 days, the crop was assessed for nodulation, shoot and root dry weights, and morphological features. In the second experiment, soybean was inoculated with a consortium of native isolates, commercial inoculant (USDA 110), and a mixture of commercial and native isolates. Remarkably, the native isolates significantly ( ) increased nodulation and shoot dry weight across the two common bean varieties compared to the commercial inoculant, CIAT 899. Mixing of the native rhizobia species and commercial inoculant did not show any further increase in nodulation and shoot performance in both crops. Further field studies will ascertain the effectiveness and efficiency of the tested indigenous isolates.


The Open Microbiology Journal | 2015

Physico-chemical Analysis, Microbial Isolation, Sensitivity Test of the Isolates and Solar Disinfection of Water Running in Community Taps and River Kandutura in Nakuru North Sub-county, Kenya.

Paul Njenga Waithaka; John Maingi; Anthony Kebira Nyamache

Nakuru North sub-county is a peri-urban area which has both dry and wet seasons. Its residents rely mostly on untreated water sources for daily water needs due to unreliable water supply from the urban council. However, this water has not been evaluated on its quality despite residents solely depending on it. This study was aimed at determining the physico-chemical and bacteriological quality of water drawn from River Kandutura and water taps in Nakuru North sub-county. In addition, the study was aimed at carrying out sensitivity test of the isolates to antibiotics and determining effectiveness of solar disinfection in water treatment. A total of 510 water samples; river (255) and taps (255) were collected and analyzed between January and December 2013. Antimicrobial sensitivity test was carried out using Kirby Bauer disk diffusion test. Out of five hundred and ten (510) samples examined for microorganisms, 36.86 % (188/510) were positive for E. coli, Shigella and Salmonella. Water used by Nakuru North sub-county residents is highly contaminated thus posing public health risk. Solar disinfection experiment indicated a possibility of effective decontamination of water up on exposure to sun light for 3-5 h. E. coli showed the highest resistance (26.3 %) followed by Salmonella (17.4 %) while Shigella showed the least (17.1 %). However, there was no significant deference (p=0.98) in resistance among total coliforms, Total heterotrophic and Salmonella at 0.05 level of significant. There is a need to enforce laws and policies on proper waste disposal as part of water pollution control.


Frontiers in Plant Science | 2017

Potential of Native Rhizobia in Enhancing Nitrogen Fixation and Yields of Climbing Beans (Phaseolus vulgaris L.) in Contrasting Environments of Eastern Kenya

Gilbert Koskey; Simon Wambui Mburu; Ezekiel Mugendi Njeru; Jacinta M. Kimiti; Omwoyo Ombori; John Maingi

Climbing bean (Phaseolus vulgaris L.) production in Kenya is greatly undermined by low soil fertility, especially in agriculturally prolific areas. The use of effective native rhizobia inoculants to promote nitrogen fixation could be beneficial in climbing bean production. In this study, we carried out greenhouse and field experiments to evaluate symbiotic efficiency, compare the effect of native rhizobia and commercial inoculant on nodulation, growth and yield parameters of mid-altitude climbing bean (MAC 13 and MAC 64) varieties. The greenhouse experiment included nine native rhizobia isolates, a consortium of native isolates, commercial inoculant Biofix, a mixture of native isolates + Biofix, nitrogen treated control and a non-inoculated control. In the field experiments, the treatments included the best effective native rhizobia isolate ELM3, a consortium of native isolates, a commercial inoculant Biofix, a mixture of native isolates + Biofix, and a non-inoculated control. Remarkably, four native rhizobia isolates ELM3, ELM4, ELM5, and ELM8 showed higher symbiotic efficiencies compared to the Biofix. Interestingly, there was no significant difference in symbiotic efficiency between the two climbing bean varieties. Field results demonstrated a significant improvement in nodule dry weight and seed yields of MAC 13 and MAC 64 climbing bean varieties upon rhizobia inoculation when compared to the non-inoculated controls. Inoculation with ELM3 isolate resulted to the highest seed yield of 4,397.75 kg ha−1, indicating 89% increase over non-inoculated control (2,334.81 kg ha−1) and 30% increase over Biofix (3,698.79 kg ha−1). Farm site significantly influenced nodule dry weight and seed yields. This study, therefore, revealed the potential of native rhizobia isolates to enhance delivery of agroecosystem services including nitrogen fixation and bean production. Further characterization and mapping of the native isolates will be imperative in development of effective and affordable commercial inoculants.


Applied Microbiology: Open Access | 2017

Genetic Characterization of Rhizosphere Bacteria that Inhabit Common Bean Nodules in Western Kenya Soils

Clabe Wekesa; John Muoma; Omwoyo Ombori; John Maingi; Daniel Okun; Kelvin Juma; Patrick Okoth; Emily Wamalwa; Mario Kollenberg; Eliakim Mauti

Background: With the increasing world population, there is increasing demand for food. This has led to overuse of agricultural farms causing reduced soil fertility and accumulation of phytopathogens. Inorganic fertilizers and pesticides have been extensively used in response to these challenges. Extensive integration of inorganic fertilizers and pesticides in the farming system has contributed to soil and water pollution worsening the eutrophication in rivers lake waters. Alternative farming methods are therefore necessary to address this problem. Recent studies have found that rhizobacteria that colonize nodules of leguminous plants are capable of increasing yield and health of the tested plants. Their plant growth promoting ability depends on the rhizobacteria type, soil properties, and climatic conditions. The aim of this study, therefore, was to genetically characterize rhizobacteria that closely associate with common bean nodules by analyzing the nucleotide sequence of 16SrRNA gene. Results: The 16SrRNA gene analysis revealed that common bean nodule associated bacteria in Western Kenya soils are genetically diverse as indicated by the evolutionary genetic distances. Not even organisms in the same species had zero genetic distance though they formed independent groups on the phylogenetic tree. The isolates belonged to the genus Pseudomonas, Providencia, Rhizobia, Klebsiella, Enterobacter, Delfitia and Acinetobacter as identified through nucleotide BLAST at the NCBI GenBank database. Conclusion: Rhizobacteria that colonize common bean nodules are genetically diverse. Those found in this study may be adaptable to Western Kenya soils and further tests are required to determine their plant growth promoting efficiency.


Journal of Plant Nutrition | 2018

Effect of nitrogen sources on the yield of common bean (Phaseolus vulgaris) in western Kenya

Fanuel Kawaka; Mathews M. Dida; Peter Opala; Omwoyo Ombori; John Maingi; Alice Amoding; John Muoma

ABSTRACT Depletion of soil nutrients due to continuous cultivation without adequate external fertilization is one of the challenges facing many smallholder farmers in western Kenya. This study was conducted to assess the effects of organic (water hyacinth compost), inorganic (urea) nitrogen (N) sources, and commercial Rhizobia inoculant on the yield of common bean (Phaseolus vulgaris) for two consecutive seasons in the short rains (2013) and long rains (2014). The experiments were laid out in a randomized complete block design and replicated four times. Triple superphosphate was applied to all treatments except those with compost to ensure that the soil had adequate phosphorus (P). Yellow and Rose coco bean varieties grown with urea and inoculated with commercial Rhizobia inoculant gave significantly higher yield of 382 kg ha−1 and 341 kg ha−1, respectively in the short rains (SR) season. In the long rains (LR) season bean yield was high in water hyacinth compost (1526 kg ha−1) and control with non-limiting P (1300 kg ha−1) treatments. Commercial Rhizobia inoculant did not significantly increase in yield in the SR and LR seasons. There was no significant influence on soil properties after two seasons of continuous cultivation of common bean and application of organic and inorganic fertilizers. These results demonstrate that water hyacinth compost improved bean yield in the LR season. However, longer field testing and economic analysis are required for it to be recommended as a substitute for inorganic N source among smallholder farmers.


Frontiers in Microbiology | 2018

Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties

Gilbert Koskey; Mburu Wambui Simon; Jacinta M. Kimiti; Omwoyo Ombori; John Maingi; Ezekiel Mugendi Njeru

The increasing interest in the use of rhizobia as biofertilizers in smallholder agricultural farming systems of the Sub-Saharan Africa has prompted the identification of a large number of tropical rhizobia strains and led to studies on their diversity. Inoculants containing diverse strains of rhizobia have been developed for use as biofertilizers to promote soil fertility and symbiotic nitrogen fixation in legumes. In spite of this success, there is paucity of data on rhizobia diversity and genetic variation associated with the newly released and improved mid-altitude climbing (MAC) bean lines (Phaseolus vulgaris L.). In this study, 41 rhizobia isolates were obtained from the root nodules of MAC 13 and MAC 64 climbing beans grown in upper and lower midland agro-ecological zones of Eastern Kenya. Eastern Kenya was chosen because of its high production potential of diverse common bean cultivars. The rhizobia isolates were characterized phenotypically on the basis of colony morphology, growth and biochemical features. Rhizobia diversity from the different regions of Eastern Kenya was determined based on the amplified ribosomal DNA restriction analysis (ARDRA) of PCR amplified 16S rRNA genes using Msp I, EcoR I, and Hae III restriction enzymes. Notably, native rhizobia isolates were morphologically diverse and grouped into nine different morphotypes. Correspondingly, the analysis of molecular variance based on restriction digestion of 16S rRNA genes showed that the largest proportion of significant (p < 0.05) genetic variation was distributed within the rhizobia population (97.5%) than among rhizobia populations (1.5%) in the four agro-ecological zones. The high degree of morphological and genotypic diversity of rhizobia within Eastern Kenya shows that the region harbors novel rhizobia strains worth exploiting to obtain strains efficient in biological nitrogen fixation with P. vulgaris L. Genetic sequence analysis of the isolates and testing for their symbiotic properties should be carried out to ascertain their identity and functionality in diverse environments.


IOSR Journal of Pharmacy and Biological Sciences | 2017

The efficacy of some medicinal plants used locally within Transmara west, Narok County, Kenya against selected Enterobacteria and Candida

Hesbon Omwoyo Nyang’au; John Maingi; Anthony Kebira

The bacterial family Enterobacteriaceae and fungal genus Candida have continued to be a great challenge worldwide including resistance to antibiotics and relapse of infections mediated by them. Among these organisms, Salmonella typhi, Shigella species, Klebsiella pneumoniae and Escherichia coli strains have emerged as the most frequent cause of diarrheal illnesses which account for an annual mortality rate of 4.6 million people worldwide and many other infections. Candida albicans has been reported as a causative agent of all types of candidiasis. In the present study, the efficacy of plants commonly used plants in Transmara west, Kenya against these microbes was investigated. An ethnobotanical survey using semi-structured questionnaire was done. Plant extracts were obtained through methanolic extraction. Antimicrobial susceptibility assay was done using Kirby Bauer disk diffusion technique. Minimum inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) for the bacterial test stains and Minimum Fungicidal Concentration (MFC) for C. albicans were determined using microtitre broth dilution method. Phytochemical tests were done using standard procedures. The study validates the ethno-medicinal use of Pterolobium stellatum, Rhamnus prinoides, Phyllanthus urinaria, Carissa edulis, Clutia abyssinica, Clerodendrum rotundifolium, Clerodendron myricoides and Dovyalis abyssinica and recommends consideration for the use of the studied plants as possible sources of antimicrobial agents in the development of drugs for treatment of Enterobacteria and Candida related infections.

Collaboration


Dive into the John Maingi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Muoma

Masinde Muliro University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dative Mukaminega

Kigali Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge