Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Major is active.

Publication


Featured researches published by John Major.


Cancer Cell | 2010

Integrative Genomic Profiling of Human Prostate Cancer

Barry S. Taylor; Nikolaus Schultz; Haley Hieronymus; Anuradha Gopalan; Yonghong Xiao; Brett S. Carver; Vivek K. Arora; Poorvi Kaushik; Ethan Cerami; Boris Reva; Yevgeniy Antipin; Nicholas Mitsiades; Thomas Landers; Igor Dolgalev; John Major; Manda Wilson; Nicholas D. Socci; Alex E. Lash; Adriana Heguy; James A. Eastham; Howard I. Scher; Victor E. Reuter; Peter T. Scardino; Chris Sander; Charles L. Sawyers; William L. Gerald

Annotation of prostate cancer genomes provides a foundation for discoveries that can impact disease understanding and treatment. Concordant assessment of DNA copy number, mRNA expression, and focused exon resequencing in 218 prostate cancer tumors identified the nuclear receptor coactivator NCOA2 as an oncogene in approximately 11% of tumors. Additionally, the androgen-driven TMPRSS2-ERG fusion was associated with a previously unrecognized, prostate-specific deletion at chromosome 3p14 that implicates FOXP1, RYBP, and SHQ1 as potential cooperative tumor suppressors. DNA copy-number data from primary tumors revealed that copy-number alterations robustly define clusters of low- and high-risk disease beyond that achieved by Gleason score. The genomic and clinical outcome data from these patients are now made available as a public resource.


Nature Genetics | 2010

Subtype-specific genomic alterations define new targets for soft tissue sarcoma therapy

Jordi Barretina; Barry S. Taylor; Shantanu Banerji; Alexis Ramos; Mariana Lagos-Quintana; Penelope DeCarolis; Kinjal Shah; Nicholas D. Socci; Barbara A. Weir; Alan Ho; Derek Y. Chiang; Boris Reva; Craig H. Mermel; Gad Getz; Yevgenyi Antipin; Rameen Beroukhim; John Major; Charles Hatton; Richard Nicoletti; Megan Hanna; Ted Sharpe; Timothy Fennell; Kristian Cibulskis; Robert C. Onofrio; Tsuyoshi Saito; Neerav Shukla; Christopher Lau; Sven Nelander; Serena J. Silver; Carrie Sougnez

Soft-tissue sarcomas, which result in approximately 10,700 diagnoses and 3,800 deaths per year in the United States, show remarkable histologic diversity, with more than 50 recognized subtypes. However, knowledge of their genomic alterations is limited. We describe an integrative analysis of DNA sequence, copy number and mRNA expression in 207 samples encompassing seven major subtypes. Frequently mutated genes included TP53 (17% of pleomorphic liposarcomas), NF1 (10.5% of myxofibrosarcomas and 8% of pleomorphic liposarcomas) and PIK3CA (18% of myxoid/round-cell liposarcomas, or MRCs). PIK3CA mutations in MRCs were associated with Akt activation and poor clinical outcomes. In myxofibrosarcomas and pleomorphic liposarcomas, we found both point mutations and genomic deletions affecting the tumor suppressor NF1. Finally, we found that short hairpin RNA (shRNA)-based knockdown of several genes amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields a detailed map of molecular alterations across diverse sarcoma subtypes and suggests potential subtype-specific targets for therapy.


Nucleic Acids Research | 2007

CancerGenes: a gene selection resource for cancer genome projects

Maureen E. Higgins; Martine Claremont; John Major; Chris Sander; Alex E. Lash

The genome sequence framework provided by the human genome project allows us to precisely map human genetic variations in order to study their association with disease and their direct effects on gene function. Since the description of tumor suppressor genes and oncogenes several decades ago, both germ-line variations and somatic mutations have been established to be important in cancer-in terms of risk, oncogenesis, prognosis and response to therapy. The Cancer Genome Atlas initiative proposed by the NIH is poised to elucidate the contribution of somatic mutations to cancer development and progression through the re-sequencing of a substantial fraction of the total collection of human genes-in hundreds of individual tumors and spanning several tumor types. We have developed the CancerGenes resource to simplify the process of gene selection and prioritization in large collaborative projects. CancerGenes combines gene lists annotated by experts with information from key public databases. Each gene is annotated with gene name(s), functional description, organism, chromosome number, location, Entrez Gene ID, GO terms, InterPro descriptions, gene structure, protein length, transcript count, and experimentally determined transcript control regions, as well as links to Entrez Gene, COSMIC, and iHOP gene pages and the UCSC and Ensembl genome browsers. The user-friendly interface provides for searching, sorting and intersection of gene lists. Users may view tabulated results through a web browser or may dynamically download them as a spreadsheet table. CancerGenes is available at http://cbio.mskcc.org/cancergenes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers

Selvaraju Veeriah; Cameron Brennan; Shasha Meng; Bhuvanesh Singh; James A. Fagin; David B. Solit; Philip B. Paty; D. Rohle; Igor Vivanco; Juliann Chmielecki; William Pao; Marc Ladanyi; William L. Gerald; Linda M. Liau; Timothy Cloughesy; Paul S. Mischel; Chris Sander; Barry S. Taylor; Nikolaus Schultz; John Major; Adriana Heguy; Fang Fang; Ingo K. Mellinghoff; Timothy A. Chan

Tyrosine phosphorylation plays a critical role in regulating cellular function and is a central feature in signaling cascades involved in oncogenesis. The regulation of tyrosine phosphorylation is coordinately controlled by kinases and phosphatases (PTPs). Whereas activation of tyrosine kinases has been shown to play vital roles in tumor development, the role of PTPs is much less well defined. Here, we show that the receptor protein tyrosine phosphatase delta (PTPRD) is frequently inactivated in glioblastoma multiforme (GBM), a deadly primary neoplasm of the brain. PTPRD is a target of deletion in GBM, often via focal intragenic loss. In GBM tumors that do not possess deletions in PTPRD, the gene is frequently subject to cancer-specific epigenetic silencing via promoter CpG island hypermethylation (37%). Sequencing of the PTPRD gene in GBM and other primary human tumors revealed that the gene is mutated in 6% of GBMs, 13% of head and neck squamous cell carcinomas, and in 9% of lung cancers. These mutations were deleterious. In total, PTPRD inactivation occurs in >50% of GBM tumors, and loss of expression predicts for poor prognosis in glioma patients. Wild-type PTPRD inhibits the growth of GBM and other tumor cells, an effect not observed with PTPRD alleles harboring cancer-specific mutations. Human astrocytes lacking PTPRD exhibited increased growth. PTPRD was found to dephosphorylate the oncoprotein STAT3. These results implicate PTPRD as a tumor suppressor on chromosome 9p that is involved in the development of GBMs and multiple human cancers.


Oncogene | 2009

An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors

Dhananjay Chitale; Yongxing Gong; Barry S. Taylor; Stephen Broderick; Cameron Brennan; Romel Somwar; Ben Golas; Lu Wang; Noriko Motoi; Janos Szoke; J. M. Reinersman; John Major; Chris Sander; Venkatraman E. Seshan; Maureen F. Zakowski; Valerie W. Rusch; William Pao; William L. Gerald; Marc Ladanyi

To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by integrating genome-wide data on copy number alterations and gene expression with full annotation for major known somatic mutations in this cancer. This showed non-random patterns of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct clinical outcomes, and led to the discovery of a striking association of EGFR mutations with underexpression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. DUSP4 is involved in negative feedback control of EGFR signaling, and we provide functional validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer patients. Another novel observation is that of a reciprocal relationship between EGFR and LKB1 mutations. These results highlight the power of integrated genomics to identify candidate driver genes within recurrent broad regions of copy number alteration and to delineate distinct oncogenetic pathways in genetically complex common epithelial cancers.


Nature | 2006

DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage

Michael C. Zody; Manuel Garber; David J. Adams; Ted Sharpe; Jennifer Harrow; James R. Lupski; Christine Nicholson; Steven M. Searle; Laurens Wilming; Sarah K. Young; Amr Abouelleil; Nicole R. Allen; Weimin Bi; Toby Bloom; Mark L. Borowsky; Boris Bugalter; Jonathan Butler; Jean L. Chang; Chao-Kung Chen; April Cook; Benjamin Corum; Christina A. Cuomo; Pieter J. de Jong; David DeCaprio; Ken Dewar; Michael Fitzgerald; James Gilbert; Richard Gibson; Sante Gnerre; Steven Goldstein

Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.


Bioinformatics | 2007

Genomic mutation consequence calculator

John Major

UNLABELLED The genomic mutation consequence calculator (GMCC) is a tool that will reliably and quickly calculate the consequence of arbitrary genomic mutations. GMCC also reports supporting annotations for the specified genomic region. The particular strength of the GMCC is it works in genomic space, not simply in spliced transcript space as some similar tools do. Within gene features, GMCC can report on the effects on splice site, UTR and coding regions in all isoforms affected by the mutation. A considerable number of genomic annotations are also reported, including: genomic conservation score, known SNPs, COSMIC mutations, disease associations and others. The manual interface also offers link outs to various external databases and resources. In batch mode, GMCC returns a csv file which can easily be parsed by the end user. AUDIENCE GMCC is intended to support the many tumor resequencing efforts, but can be useful to any study investigating genomic mutations.


Genome Research | 2004

The Complete Genome and Proteome of Mycoplasma mobile

Jacob D. Jaffe; Nicole Stange-Thomann; Cherylyn L. Smith; David DeCaprio; Sheila Fisher; Jonathan Butler; Sarah E. Calvo; Tim Elkins; Michael Fitzgerald; Nabil Hafez; Chinnappa D. Kodira; John Major; Shunguang Wang; Jane Wilkinson; Robert Nicol; Chad Nusbaum; Bruce Birren; Howard C. Berg; George M. Church


Australian Association for Research in Education Annual Conference | 2011

The acquisition of bridging capital by Sudanese young people in a regional Australian town: the role of mothers and family

Ninetta Santoro; John Major; Jane Wilkinson; Kiprono Langat


Cancer Research | 2007

Study of genetic alterations in soft tissue sarcomas by SNP arrays, expression profiling and high-throughput sequencing

Jordi Barretina; Barry S. Taylor; Alex Ramos; Penelope DeCarolis; William M. Lin; Nick Socci; Derek Chiang; Sven Nelander; Barbara Weir; Boris Reva; Gaddy Getz; Yevgenyi Antipin; Rameen Beroukhim; Rick Nicoletti; John Major; Charlie Hatton; Wendy Winckler; Levi Garraway; Alex E. Lash; Heidi Greulich; Cristina R. Antonescu; Todd R. Golub; Chris Sander; Marc Ladanyi; Matthew Meyerson; S. Singer

Collaboration


Dive into the John Major's collaboration.

Top Co-Authors

Avatar

Barry S. Taylor

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex E. Lash

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Boris Reva

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marc Ladanyi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

William L. Gerald

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron Brennan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge