Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John McCann is active.

Publication


Featured researches published by John McCann.


Anesthesiology | 2011

Comparison of the Neuroapoptotic Properties of Equipotent Anesthetic Concentrations of Desflurane, Isoflurane, or Sevoflurane in Neonatal Mice

George K. Istaphanous; Jennifer Howard; Xinyu Nan; Elizabeth A. Hughes; John McCann; John J. McAuliffe; Steve C. Danzer; Andreas W. Loepke

Background:Volatile anesthetics facilitate surgical procedures and imaging studies in millions of children every year. Neuronal cell death after prolonged exposure to isoflurane in developing animals has raised serious concerns regarding its safe use in children. Although sevoflurane and desflurane are becoming more popular for pediatric anesthesia, their cytotoxic effects have not been compared with those of isoflurane. Accordingly, using newborn mice, the current study established the respective potencies of desflurane, isoflurane, and sevoflurane and then compared equipotent doses of these anesthetics regarding their effects on cortical neuroapoptosis. Methods:Minimum alveolar concentrations were determined in littermates (aged 7–8 days, n = 42) using tail-clamp stimulation in a bracketing study design. By using equipotent doses of approximately 0.6 minimum alveolar concentration, another group of littermates was randomly assigned to receive desflurane, isoflurane, or sevoflurane or to fast in room air for 6 h. After exposure, animals (n = 47) were euthanized, neocortical apoptotic neuronal cell death was quantified, and caspase 3 activity was compared between the four groups. Results:The minimum alveolar concentration was determined to be 12.2% for desflurane, 2.7% for isoflurane, and 5.4% for sevoflurane. After a 6-h exposure to approximately 0.6 minimum alveolar concentration of desflurane, isoflurane, or sevoflurane, neuronal cell death and apoptotic activity were significantly increased, irrespective of the specific anesthetic used. Conclusions:In neonatal mice, equipotent doses of the three commonly used inhaled anesthetics demonstrated similar neurotoxic profiles, suggesting that developmental neurotoxicity is a common feature of all three drugs and cannot be avoided by switching to newer agents.


Journal of Cerebral Blood Flow and Metabolism | 2002

Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets.

C. Dean Kurth; Warren J. Levy; John McCann

Detection of cerebral hypoxia–ischemia remains problematic in neonates. Near-infrared spectroscopy, a noninvasive bedside technology has potential, although thresholds for cerebral hypoxia–ischemia have not been defined. This study determined hypoxic–ischemic thresholds for cerebral oxygen saturation (Sco2) in terms of EEG, brain ATP, and lactate concentrations, and compared these values with CBF and sagittal sinus oxygen saturation (Svo2). Sixty anesthetized piglets were equipped with near-infrared spectroscopy, EEG, laser-Doppler flowmetry, and a sagittal sinus catheter. After baseline, Sco2 levels of less than 20%, 20% to 29%, 30% to 39%, 40% to 49%, 50% to 59%, 60% to 79%, or 80% or greater were recorded for 30 minutes of normoxic normocapnia, hypercapnic hyperoxia, or bilateral carotid occlusion with or without arterial hypoxia. Brain ATP and lactate concentrations were measured biochemically. Logistic and linear regression determined the Sco2, CBF, and Svo2 thresholds for abnormal EEG, ATP, and lactate findings. Baseline Sco2 was 68 + 5%. The Sco2 thresholds for increased lactate, minor and major EEG change, and decreased ATP were 44 ± 1%, 42 ± 5%, 37 ± 1%, and 33 ± 1%. The Sco2 correlated linearly with Svo2 (r = 0.98) and CBF (r = 0.89), with corresponding Svo2 thresholds of 23%, 20%, 13%, and 8%, and CBF thresholds (% baseline) of 56%, 52%, 42%, and 36%. Thus, cerebral hypoxia-ischemia near-infrared spectroscopy thresholds for functional impairment are Sco2 33% to 44%, a range that is well below baseline Sco2 of 68%, suggesting a buffer between normal and dysfunction that also exists for CBF and Svo2.


Anesthesia & Analgesia | 2009

The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory.

Andreas W. Loepke; George K. Istaphanous; John J. McAuliffe; Lili Miles; Elizabeth A. Hughes; John McCann; Kathryn E. Harlow; C. Dean Kurth; Michael T. Williams; Charles V. Vorhees; Steve C. Danzer

BACKGROUND: Volatile anesthetics, such as isoflurane, are widely used in infants and neonates. Neurodegeneration and neurocognitive impairment after exposure to isoflurane, midazolam, and nitrous oxide in neonatal rats have raised concerns regarding the safety of pediatric anesthesia. In neonatal mice, prolonged isoflurane exposure triggers hypoglycemia, which could be responsible for the neurocognitive impairment. We examined the effects of neonatal isoflurane exposure and blood glucose on brain cell viability, spontaneous locomotor activity, as well as spatial learning and memory in mice. METHODS: Seven-day-old mice were randomly assigned to 6 h of 1.5% isoflurane with or without injections of dextrose or normal saline, or to 6 h of room air without injections (no anesthesia). Arterial blood gases and glucose were measured. After 2 h, 18 h, or 11 wk postexposure, cellular viability was assessed in brain sections stained with Fluoro-Jade B, caspase 3, or NeuN. Nine weeks postexposure, spontaneous locomotor activity was assessed, and spatial learning and memory were evaluated in the Morris water maze using hidden and reduced platform trials. RESULTS: Apoptotic cellular degeneration increased in several brain regions early after isoflurane exposure, compared with no anesthesia. Despite neonatal cell loss, however, adult neuronal density was unaltered in two brain regions significantly affected by the neonatal degeneration. In adulthood, spontaneous locomotor activity and spatial learning and memory performance were similar in all groups, regardless of neonatal isoflurane exposure. Neonatal isoflurane exposure led to an 18% mortality, and transiently increased Paco2, lactate, and base deficit, and decreased blood glucose levels. However, hypoglycemia did not seem responsible for the neurodegeneration, as dextrose supplementation failed to prevent neuronal loss. CONCLUSIONS: Prolonged isoflurane exposure in neonatal mice led to increased immediate brain cell degeneration, however, no significant reductions in adult neuronal density or deficits in spontaneous locomotion, spatial learning, or memory function were observed.


Anesthesia & Analgesia | 2006

The physiologic effects of isoflurane anesthesia in neonatal mice

Andreas W. Loepke; John McCann; C. Dean Kurth; John J. McAuliffe

In neonatal rodents, isoflurane has been shown to confer neurological protection during hypoxia-ischemia and to precipitate neurodegeneration after prolonged exposure. Whether neuroprotection or neurotoxicity result from a direct effect of isoflurane on the brain or an indirect effect through hemodynamic or metabolic changes remains unknown. We recorded arterial blood pressure, heart rate, blood gases, and glucose in 10-day-old mice during 60 min of isoflurane anesthesia with spontaneous or mechanical ventilation, as well as during 60 min of hypoxia-ischemia with isoflurane anesthesia or without anesthesia. During isoflurane anesthesia, hypoglycemia and metabolic acidosis occurred with spontaneous and mechanical ventilation. During hypoxia-ischemia, isoflurane was fatal with spontaneous breathing but survivable with mechanical ventilation, with arterial blood pressure and heart rate being similar to that observed in unanesthetized animals. Minimum alveolar concentration (MAC) was 2.3% in 10-day-old mice. In summary, isoflurane anesthesia precipitated hypoglycemia, which may have contributed to the neurodegeneration observed in neonatal rodents. Use of 0.8 MAC isoflurane for evaluation of neuroprotection during hypoxia-ischemia requires mechanical ventilation and glucose supplementation in this model.


Anesthesia & Analgesia | 2009

Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets.

C. Dean Kurth; John McCann; Jun Wu; Lili Miles; Andreas W. Loepke

BACKGROUND: Detection of cerebral hypoxia-ischemia (H-I) and prevention of brain injury remains problematic in critically ill neonates. Near-infrared spectroscopy (NIRS), a noninvasive bedside technology could fill this role, although NIRS cerebral O2 saturation (ScO2) viability-time thresholds for brain injury have not been determined. We investigated the relationship between H-I duration at ScO2 35%, a viability threshold which causes neurophysiological impairment, to neurological outcome. METHODS: Forty-six fentanyl-midazolam anesthetized piglets were equipped with NIRS and cerebral function monitor (CFM) to record ScO2 and electrocortical activity (ECA). After carotid occlusion, inspired O2 was adjusted to produce H-I (ScO2 35% with decreased ECA) for 1, 2, 3, 4, 6 or 8 h in different groups, followed by survival to assess neurological outcome by behavioral and histological examination. RESULTS: For H-I lasting 1 or 2 h, ECA and ScO2 during reperfusion rapidly returned to normal and neurological outcomes were normal. For H-I more than 2–3 h, ECA was significantly decreased and ScO2 was significantly increased during reperfusion, suggesting continued depression of tissue O2 metabolism. As H-I increased beyond 2 h, the incidence of neurological injury increased linearly, approximately 15% per h. CONCLUSION: A viability-time threshold for H-I injury is ScO2 of 35% for 2–3 h, heralded by abnormalities in NIRS and CFM during reperfusion. These findings suggest that NIRS and CFM might be used together to predict neurological outcome, and illustrate that there is a several hour window of opportunity during H-I to prevent neurological injury.


Anesthesiology | 2002

Desflurane Improves Neurologic Outcome after Low-flow Cardiopulmonary Bypass in Newborn Pigs

Andreas W. Loepke; Margaret A. Priestley; Steven E. Schultz; John McCann; Jeffrey A. Golden; C. Dean Kurth

Background Despite improvements in neonatal heart surgery, neurologic complications continue to occur from low-flow cardiopulmonary bypass (LF-CPB) and deep hypothermic circulatory arrest (DHCA). Desflurane confers neuroprotection against ischemia at normothermia and for DHCA. This study compared neurologic outcome of a desflurane-based with a fentanyl-based anesthetic for LF-CPB. Methods Thirty piglets aged 1 week received either fentanyl–droperidol (F/D), desflurane 4.5% (Des4.5), or desflurane 9% (Des9) during surgical preparation and CPB. Arterial blood gases, glucose, heart rate, arterial pressure, brain temperature, and cerebral blood flow (laser Doppler flowmetry) were recorded. After CPB cooling (22°C brain) using pH-stat strategy, LF-CPB was performed for 150 min followed by CPB rewarming, separation from CPB, and extubation. On postoperative day 2, functional and histologic outcomes were assessed. Results Cardiovascular variables were physiologically similar between groups before, during, and after LF-CPB. Cerebral blood flow during LF-CPB (13% of pre-CPB value) did not differ significantly between the groups. Functional disability was worse in F/D than in Des9 (P = 0.04) but not Des4.5 (P = 0.1). In neocortex, histopathologic damage was greater in F/D than in Des4.5 (P = 0.03) and Des9 (P = 0.009). In hippocampus, damage was worse in F/D than in Des9 (P = 0.01) but not Des4.5 (P = 0.08). The incidences of ventricular fibrillation during LF-CPB were 90, 60, and 10% for F/D, Des4.5 (P = 0.06), and Des9 (P = 0.0002), respectively. Conclusions Desflurane improved neurologic outcome following LF-CPB compared with F/D in piglets, indicated by less functional disability and less histologic damage, especially with Des9. Desflurane may have produced cardiac protection, suggested by a lower incidence of ventricular fibrillation.


Anesthesiology | 2003

Apoptotic Neuronal Death following Deep Hypothermic Circulatory Arrest in Piglets

Dara Ditsworth; Margaret A. Priestley; Andreas W. Loepke; Chandra Ramamoorthy; John McCann; Lauren Staple; C. Dean Kurth

Background Deep hypothermic circulatory arrest (DHCA), as used in infant heart surgery, carries a risk of brain injury. In a piglet DHCA model, neocortical neurons appear to undergo apoptotic death. Caspases, cytochrome c, tumor necrosis factor (TNF), and Fas play a role in apoptosis in many ischemic models. This study examined the expression of these factors in a DHCA piglet model. Methods Thirty-nine anesthetized piglets were studied. After cardiopulmonary bypass (CPB) cooling of the brain temperature to 19°C, DHCA was induced for 90 min, followed by CPB rewarming. After separation from CPB, piglets were killed at 1, 4, 8, 24, and 72 h and 1 week. Caspase-8 and -3 activity, and concentrations of TNF-&agr;, Fas, Fas-ligand, cytochrome c, and adenosine triphosphate (ATP) were measured in the neocortex by enzymatic assay and Western blot analysis. Caspase-8 and -3 activity and cell death were examined histologically. Significance was set at P < 0.05. Results In neocortex, damaged neurons were not observed in control (no CPB), rarely observed in CPB (no DHCA), and rarely observed in the DHCA 1-h, 4-h, and 1-week reperfusion groups. However, they were seen frequently in the DHCA 8-, 24-, and 72-h reperfusion groups. Although neuronal death was widespread 8–72 h after DHCA, cortical ATP concentrations remained unchanged from control. Both caspase-3 and -8 activities were significantly increased at 8 h after DHCA, and caspase-3 concentration remained elevated for as long as 72 h. Caspase-3 and -8 activity was also observed in damaged neocortical neurons. Cytosolic cytochrome c and Fas were significantly expressed at 1 h and 4 h after DHCA, respectively. Fas-ligand and TNF-&agr; were not observed in any group. Conclusion After DHCA, induction of apoptosis in the neocortex occurs within a few hours of reperfusion and continues for several days. Increased Fas, cytochrome c, and caspase concentrations, coupled with normal brain ATP concentrations and apoptotic histologic appearance, are consistent with the occurrence of apoptotic cell death.


Anesthesiology | 2001

Desflurane confers neurologic protection for deep hypothermic circulatory arrest in newborn pigs

C. Dean Kurth; Margaret A. Priestley; H. Marc Watzman; John McCann; Jeffrey A. Golden

BackgroundCardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA), as used for infant heart surgery, carry a risk of ischemic neurologic injury. Volatile anesthetics have neuroprotective properties against both global and focal ischemia at normothermia. The authors examined the hemodynamic and neuroprotective effects of desflurane in a piglet CPB–DHCA model. MethodsTwenty piglets aged 5–10 days received a desflurane- (6–9% expired) or fentanyl-based anesthetic before and during CPB (before and after DHCA). DHCA lasted 90 min at 19°C brain. Cardiovascular variables (heart rate, arterial pressure, blood gases, glucose, brain temperature) were monitored. On postoperative day 2, neurologic and histologic outcomes were determined. ResultsCardiovascular variables before, during, and after CPB were physiologically similar between groups. The desflurane group had better neurologic performance (P = 0.023) and greater postoperative weight gain (P = 0.04) than the fentanyl group. In neocortex, the desflurane group had less tissue damage (P = 0.0015) and fewer dead neurons (P = 0.0015) than the fentanyl group. Hippocampal tissue damage was less in the desflurane group (P = 0.05), but overall, neuronal cell counts in the CA1 sector of the right hippocampus were similar to those in the fentanyl group. ConclusionsDesflurane-based anesthesia yields hemodynamics during CPB with DHCA that are similar to those with fentanyl-based anesthesia. However, desflurane-based anesthesia improves neurologic and histologic outcomes of CPB–DHCA in comparison with outcomes with fentanyl-based anesthesia.


Anesthesia & Analgesia | 2013

Characterization and quantification of isoflurane-induced developmental apoptotic cell death in mouse cerebral cortex.

George K. Istaphanous; Christopher G. Ward; Xinyu Nan; Elizabeth A. Hughes; John McCann; John J. McAuliffe; Steve C. Danzer; Andreas W. Loepke

BACKGROUND:Accumulating evidence indicates that isoflurane and other, similarly acting anesthetics exert neurotoxic effects in neonatal animals. However, neither the identity of dying cortical cells nor the extent of cortical cell loss has been sufficiently characterized. We conducted the present study to immunohistochemically identify the dying cells and to quantify the fraction of cells undergoing apoptotic death in neonatal mouse cortex, a substantially affected brain region. METHODS:Seven-day-old littermates (n = 36) were randomly assigned to a 6-hour exposure to either 1.5% isoflurane or fasting in room air. Animals were euthanized immediately after exposure and brain sections were double-stained for activated caspase 3 and one of the following cellular markers: Neuronal Nuclei (NeuN) for neurons, glutamic acid decarboxylase (GAD)65 and GAD67 for GABAergic cells, as well as GFAP (glial fibrillary acidic protein) and S100&bgr; for astrocytes. RESULTS:In 7-day-old mice, isoflurane exposure led to widespread increases in apoptotic cell death relative to controls, as measured by activated caspase 3 immunolabeling. Confocal analyses of caspase 3–labeled cells in cortical layers II and III revealed that the overwhelming majority of cells were postmitotic neurons, but some were astrocytes. We then quantified isoflurane-induced neuronal apoptosis in visual cortex, an area of substantial injury. In unanesthetized control animals, 0.08% ± 0.001% of NeuN-positive layer II/III cortical neurons were immunoreactive for caspase 3. By contrast, the rate of apoptotic NeuN-positive neurons increased at least 11-fold (lower end of the 95% confidence interval [CI]) to 2.0% ± 0.004% of neurons immediately after isoflurane exposure (P = 0.0017 isoflurane versus control). In isoflurane-treated animals, 2.9% ± 0.02% of all caspase 3–positive neurons in superficial cortex also coexpressed GAD67, indicating that inhibitory neurons may also be affected. Analysis of GABAergic neurons, however, proved unexpectedly complex. In addition to inducing apoptosis among some GAD67-immunoreactive neurons, anesthesia also coincided with a dramatic decrease in both GAD67 (0.98 vs 1.84 ng/mg protein, P < 0.00001, anesthesia versus control) and GAD65 (2.25 ± 0.74 vs 23.03 ± 8.47 ng/mg protein, P = 0.0008, anesthesia versus control) protein levels. CONCLUSIONS:Prolonged exposure to isoflurane increased neuronal apoptotic cell death in 7-day-old mice, eliminating approximately 2% of cortical neurons, of which some were identified as GABAergic interneurons. Moreover, isoflurane exposure interfered with the inhibitory nervous system by downregulating the central enzymes GAD65 and GAD67. Conversely, at this age, only a minority of degenerating cells were identified as astrocytes. The clinical relevance of these findings in animals remains to be determined.


Bone Marrow Transplantation | 1999

Randomized trial of peripheral blood progenitor cell vs bone marrow as hematopoietic support for high-dose chemotherapy in patients with non-Hodgkin's lymphoma and Hodgkin's disease: a clinical and molecular analysis.

Rajani Kanteti; Kenneth B. Miller; John McCann; D Roitman; Julie Morelli; C Hurley; Eugene M. Berkman; David P. Schenkein

Filgrastim (r-metHuG-CSF)-mobilized peripheral blood progenitor cells (PBPC) and unstimulated bone marrow (BM) were evaluated and compared for reconstitution after high-dose chemotherapy in patients with relapsed Hodgkin’s disease (HD) or non-Hodgkin’s lymphoma (NHL) with respect to engraftment, overall and relapse-free survival, and contamination by lymphoma cells using molecular analysis of immunoglobulin gene rearrangements. Forty-four patients with either NHL or HD underwent autologous transplantation after high-dose chemotherapy. Patients were randomized to receive either Filgrastim-mobilized PBPC (n = 15) or unstimulated BM (n = 14). An additional 15 patients received PBPC without randomization because of a recent history of marrow involvement by lymphoma. Use of PBPC was associated with faster neutrophil engraftment than BM (11 vs 14 days to an absolute neutrophil count >0.5 × 109/l, P = 0.04), but without any difference in platelet engraftment, infectious complications, or overall or event-free survival. Both BM (65%) and PBPC (73%) were frequently contaminated by tumor cells as assessed by CDR3 analysis. Patients with negative polymerase chain reaction analysis of a BM sample during the study had a trend towards an improved survival; however, BM involvement by disease had no impact on the ability to mobilize or collect PBPC. We conclude that PBPC are as effective as BM in reconstituting hematopoiesis after high-dose chemotherapy and that both products are frequently contaminated by sequences marking the malignant clone.

Collaboration


Dive into the John McCann's collaboration.

Top Co-Authors

Avatar

C. Dean Kurth

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andreas W. Loepke

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. McAuliffe

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Hughes

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George K. Istaphanous

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Irene B. O'Hara

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lili Miles

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge