Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John McGeehan is active.

Publication


Featured researches published by John McGeehan.


Journal of Biological Chemistry | 2006

Insoluble aggregates and protease-resistant conformers of prion protein in uninfected human brains.

Jue Yuan; Xiangzhu Xiao; John McGeehan; Zhiqian Dong; Ignazio Cali; Hisashi Fujioka; Qingzhong Kong; Geoff Kneale; Pierluigi Gambetti; Wen Quan Zou

Aggregated prion protein (PrPSc), which is detergent-insoluble and partially proteinase K (PK)-resistant, constitutes the major component of infectious prions that cause a group of transmissible spongiform encephalopathies in animals and humans. PrPSc derives from a detergent-soluble and PK-sensitive cellular prion protein (PrPC) through an α-helix to β-sheet transition. This transition confers on the PrPSc molecule unique physicochemical and biological properties, including insolubility in nondenaturing detergents, an enhanced tendency to form aggregates, resistance to PK digestion, and infectivity, which together are regarded as the basis for distinguishing PrPSc from PrPC. Here we demonstrate, using sedimentation and size exclusion chromatography, that small amounts of detergent-insoluble PrP aggregates are present in uninfected human brains. Moreover, PK-resistant PrP core fragments are detectable following PK treatment. This is the first study that provides experimental evidence supporting the hypothesis that there might be silent prions lying dormant in normal human brains.


Current Opinion in Chemical Biology | 2015

Lignocellulose degradation mechanisms across the Tree of Life

Simon M. Cragg; Gregg T. Beckham; Neil C. Bruce; Daniel L. Distel; Paul Dupree; Amaia Green Etxabe; Barry Goodell; Jody Jellison; John McGeehan; Simon J. McQueen-Mason; Kirk Matthew Schnorr; Paul H. Walton; Joy E. M. Watts; Martin Zimmer

Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.


Journal of Synchrotron Radiation | 2009

Colouring cryo-cooled crystals: online microspectrophotometry

John McGeehan; Raimond B. G. Ravelli; James W. Murray; Robin L. Owen; Florent Cipriani; Sean McSweeney; Martin Weik; Elspeth F. Garman

A portable and readily aligned online microspectrophotometer that can be easily installed on macromolecular crystallography beamlines is described. It allows measurement of the spectral characteristics of macromolecular crystals prior, during, and after the X-ray diffraction experiment.


Journal of Applied Crystallography | 2007

Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements

Antoine Royant; Philippe Carpentier; Jeremy Ohana; John McGeehan; Bernhard Paetzold; Marjolaine Noirclerc-Savoye; Xavier Vernede; Virgile Adam; Dominique Bourgeois

Synchrotrons are now producing thousands of macromolecular structures each year. The need for complementary techniques available on site has progressively emerged, either to assess the relevance of the structure of a protein or to monitor changes that may occur during X-ray diffraction data collection. Microspectrophotometers in the UV-visible absorbance or fluorescence mode have evolved over the past few decades to become the instruments of choice to perform such tests. Described here are recent improvements to the microspectrophotometer of the so-called Cryobench laboratory located at the European Synchrotron Radiation Facility, Grenoble, France. Optical and mechanical properties have been enhanced so as to record better spectra on smaller samples. A device has been implemented to measure the signal decay of fluorescent samples, either in the crystalline or in the solution state. Recording of the fluorescence lifetime in addition to the steady-state fluorescence emission spectrum allows precise monitoring of the fluorescent sample under study. The device consists of an adaptation of a commercially available time-correlated single-photon-counting (TCSPC) system. A method to record and analyze series of TCSPC histograms, e.g. collected as a function of temperature, is described. To validate the instruments, fluorescence lifetimes of fluorescent small molecules or proteins in the crystalline or solution state, at room and cryo temperatures, have been measured. Lifetimes of a number of fluorescent proteins of the GFP family were generally found to be shorter in crystals than in solution, and slightly longer at cryo temperatures than at ambient temperature. The possibility of performing fluorescence lifetime measurements on crystals at synchrotron facilities widens the variety of spectroscopic techniques complementing X-ray diffraction on macromolecular crystallography beamlines.


Journal of Biological Chemistry | 2011

Amyloid-β42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain

Wen Quan Zou; Xiangzhu Xiao; Jue Yuan; Gianfranco Puoti; Hisashi Fujioka; Xinglong Wang; Sandra K Richardson; Xiaochen Zhou; Roger S. Zou; Shihao Li; Xiongwei Zhu; Patrick L. McGeer; John McGeehan; G Geoffrey Kneale; Diego E. Rincon-Limas; Pedro Fernandez-Funez; Hyoung-gon Lee; Mark A. Smith; Robert B. Petersen; Jian Ping Guo

The prion protein (PrP) is best known for its association with prion diseases. However, a controversial new role for PrP in Alzheimer disease (AD) has recently emerged. In vitro studies and mouse models of AD suggest that PrP may be involved in AD pathogenesis through a highly specific interaction with amyloid-β (Aβ42) oligomers. Immobilized recombinant human PrP (huPrP) also exhibited high affinity and specificity for Aβ42 oligomers. Here we report the novel finding that aggregated forms of huPrP and Aβ42 are co-purified from AD brain extracts. Moreover, an anti-PrP antibody and an agent that specifically binds to insoluble PrP (iPrP) co-precipitate insoluble Aβ from human AD brain. Finally, using peptide membrane arrays of 99 13-mer peptides that span the entire sequence of mature huPrP, two distinct types of Aβ binding sites on huPrP are identified in vitro. One specifically binds to Aβ42 and the other binds to both Aβ42 and Aβ40. Notably, Aβ42-specific binding sites are localized predominantly in the octapeptide repeat region, whereas sites that bind both Aβ40 and Aβ42 are mainly in the extreme N-terminal or C-terminal domains of PrP. Our study suggests that iPrP is the major PrP species that interacts with insoluble Aβ42 in vivo. Although this work indicated the interaction of Aβ42 with huPrP in the AD brain, the pathophysiological relevance of the iPrP/Aβ42 interaction remains to be established.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance

Marcelo Kern; John McGeehan; Simon Streeter; Richard N. A. Martin; Katrin Besser; Luisa Elias; Will Eborall; Graham P. Malyon; Christina M. Payne; Michael E. Himmel; Kirk Matthew Schnorr; Gregg T. Beckham; Simon M. Cragg; Neil C. Bruce; Simon J. McQueen-Mason

Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.


Journal of Biological Chemistry | 2010

PrP conformational transitions alter species preference of a PrP-specific antibody

Wen Quan Zou; Jan Langeveld; Xiangzhu Xiao; Shugui Chen; Patrick L. McGeer; Jue Yuan; M. C. Payne; Hae Eun Kang; John McGeehan; Man Sun Sy; Neil S. Greenspan; David L. Kaplan; Gong Xian Wang; Piero Parchi; Edward Hoover; Geoff Kneale; Glenn C. Telling; Witold K. Surewicz; Qingzhong Kong; Jian Ping Guo

The epitope of the 3F4 antibody most commonly used in human prion disease diagnosis is believed to consist of residues Met-Lys-His-Met (MKHM) corresponding to human PrP-(109–112). This assumption is based mainly on the observation that 3F4 reacts with human and hamster PrP but not with PrP from mouse, sheep, and cervids, in which Met at residue 112 is replaced by Val. Here we report that, by brain histoblotting, 3F4 did not react with PrP of uninfected transgenic mice expressing elk PrP; however, it did show distinct immunoreactivity in transgenic mice infected with chronic wasting disease. Compared with human PrP, the 3F4 reactivity with the recombinant elk PrP was 2 orders of magnitude weaker, as indicated by both Western blotting and surface plasmon resonance. To investigate the molecular basis of these species- and conformer-dependent preferences of 3F4, the epitope was probed by peptide membrane array and antigen competition experiments. Remarkably, the 3F4 antibody did not react with MKHM but reacted strongly with KTNMK (corresponding to human PrP-(106–110)), a sequence that is also present in cervids, sheep, and cattle. 3F4 also reacted with elk PrP peptides containing KTNMKHV. We concluded that the minimal sequence for the 3F4 epitope consists of residues KTNMK, and the species- and conformer-dependent preferences of 3F4 arise largely from the interactions between Met112 (human PrP) or Val115 (cervid PrP) and adjacent residues.


Cellular and Molecular Life Sciences | 2008

Accessibility of a critical prion protein region involved in strain recognition and its implications for the early detection of prions

Jue Yuan; Zhiqian Dong; Jian Ping Guo; John McGeehan; Xiangzhu Xiao; J. Wang; Ignazio Cali; Patrick L. McGeer; Neil R. Cashman; R. Bessen; Witold K. Surewicz; Geoff Kneale; Robert B. Petersen; Pierluigi Gambetti; Wen Quan Zou

Abstract.Human prion diseases are characterized by the accumulation in the brain of proteinase K (PK)-resistant prion protein designated PrP27-30 detectable by the 3F4 antibody against human PrP109-112. We recently identified a new PK-resistant PrP species, designated PrP*20, in uninfected human and animal brains. It was preferentially detected with the 1E4 antibody against human PrP 97-108 but not with the anti-PrP 3F4 antibody, although the 3F4 epitope is adjacent to the 1E4 epitope in the PrP*20 molecule. The present study reveals that removal of the N-terminal amino acids up to residue 91 significantly increases accessibility of the 1E4 antibody to PrP of brains and cultured cells. In contrast to cells expressing wild-type PrP, cells expressing pathogenic mutant PrP accumulate not only PrP*20 but also a small amount of 3F4-detected PK-resistant PrP27-30. Remarkably, during the course of human prion disease, a transition from an increase in 1E4-detected PrP*20 to the occurrence of the 3F4-detected PrP27-30 was observed. Our study suggests that an increase in the level of PrP*20 characterizes the early stages of prion diseases.


Nucleic Acids Research | 2008

Structural analysis of the genetic switch that regulates the expression of restriction-modification genes

John McGeehan; Simon Streeter; Sarah Thresh; Neil J. Ball; Raimond B. G. Ravelli; Geoff Kneale

Controller (C) proteins regulate the timing of the expression of restriction and modification (R–M) genes through a combination of positive and negative feedback circuits. A single dimer bound to the operator switches on transcription of the C-gene and the endonuclease gene; at higher concentrations, a second dimer bound adjacently switches off these genes. Here we report the first structure of a C protein–DNA operator complex, consisting of two C protein dimers bound to the native 35 bp operator sequence of the R–M system Esp1396I. The structure reveals a role for both direct and indirect DNA sequence recognition. The structure of the DNA in the complex is highly distorted, with severe compression of the minor groove resulting in a 50° bend within each operator site, together with a large expansion of the major groove in the centre of the DNA sequence. Cooperative binding between dimers governs the concentration-dependent activation–repression switch and arises, in part, from the interaction of Glu25 and Arg35 side chains at the dimer–dimer interface. Competition between Arg35 and an equivalent residue of the σ70 subunit of RNA polymerase for the Glu25 site underpins the switch from activation to repression of the endonuclease gene.


Journal of Applied Crystallography | 2008

X-ray tomographic reconstruction of macromolecular samples

S. Brockhauser; M. Di Michiel; John McGeehan; Andrew A. McCarthy; Raimond B. G. Ravelli

The anomalous scattering properties of innate sulfur for proteins and phosphorus for DNA and RNA can be used to solve the phase problem in macromolecular crystallography (MX) via the single-wavelength anomalous dispersion method (SAD). However, this method, which is carried out at longer X-ray wavelengths (1.5–2.5 A), is still not a routine tool in MX. The increased absorption from both air and sample associated with the use of longer X-ray wavelengths presents a key difficulty. The absorption can be corrected for through empirical algorithms, provided truly redundant data are available. Unfortunately, weakly diffracting macromolecular crystals suffer from radiation damage, resulting in a dose-dependent non-isomorphism which violates the assumption upon which these empirical algorithms are based. In this report, X-ray microtomography is used to reconstruct the three-dimensional shapes of vitrified macromolecular crystals including the surrounding solvent and sample holder. The setup can be integrated within an MX beamline environment and exploits both absorption and phase contrast. The dose needed for the tomographic measurements could be low enough to allow the technique to be used for crystal integrity characterization and alignment. X-ray tomography has some major benefits compared with the optical-light-based crystal alignment protocols currently used.

Collaboration


Dive into the John McGeehan's collaboration.

Top Co-Authors

Avatar

Geoff Kneale

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Simon Streeter

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Raimond B. G. Ravelli

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rhiannon E. Lloyd

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar

Jue Yuan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Wen Quan Zou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil J. Ball

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Gregg T. Beckham

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiangzhu Xiao

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge