John Mikler
Defence Research and Development Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Mikler.
Toxicology | 2011
Paul M. Lundy; Murray G. Hamilton; John Mikler
The oximes pralidoxime (2-PAM), its dimethanesulphonate salt derivative P2S, and obidoxime (toxogonin) are currently licensed and fielded for the treatment of chemical warfare (CW) organophosphorous (OP) nerve agent poisoning. While they are effective against several of the identified threat CW OP agents, they have little efficacy against others such as soman (GD) and cyclosarin (CF). In addition, they are also significantly less effective than other investigational oximes against the nerve agent known as Russian VX (RVX). Among the oximes currently being investigated, two in particular, HI-6 (asoxime) and MMB-4 (ICD-039, methoxime) have been proposed as replacement therapies for the currently licensed oximes. HI-6 has been safely used in individuals to treat OP insecticide poisoning, as well as in human volunteers, although its efficacy against OP nerve agent poisoning in humans cannot be demonstrated due to ethical considerations. It is currently available for use in defined military settings in Canada, Sweden and the Czech Republic, and is also under development in a number of other countries. The oxime MMB-4 has not yet been studied clinically, but is fielded by the Czech Republic, and is being developed by the United States armed services as a replacement for the currently fielded 2-PAM. This review compares the effectiveness of HI-6 and MMB-4 against nerve agent threats where comparisons can be made. HI-6 has been demonstrated to be generally a superior reactivator of nerve agent inhibited enzyme, particularly with human and non-human primate derived enzyme, and has also shown better protective effects against the lethality of most OP agents in a variety of species. Both compounds appear to be clearly superior to the available oximes, obidoxime and 2-PAM.
Journal of Chromatography B | 2008
Georg Reiter; John Mikler; Ira Hill; Kendal Weatherby; Horst Thiermann; Franz Worek
The present study was initiated to develop a sensitive and highly selective method for the analysis of the enantiomers of the nerve agent VX (O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate) in blood samples for toxicokinetic and therapeutic research. To achieve this goal, analytical and semi-preparative enantioseparation of VX were carried out with gas and liquid chromatography. The GC chiral stationary phase was HYDRODEX-beta-TBDAc (beta cyclodextrin), on which VX was baseline-resolved. On the chiral HPLC phase CHIRALCEL OD-H the enantiomers of VX were isolated with enantiomeric excess >99.99%. They were characterised by specific optical rotation (+/-25.8 deg ml dm(-1)g(-1) at 20 degrees C and 589 nm) and by determination of cholinesterase inhibition rate constants. For the quantitative chiral detection of VX the enantioresolution was realized on the HPLC chiral phase CHIRAL AGP. A specific procedure was developed to isolate VX from swine blood samples thereby stabilising its enantiomers. The limit of detection was 200 fg per enantiomer on column. The absolute recovery of the overall sample preparation procedure was 75%. After an intravenous and percutaneous administration of a supralethal dose of VX in anesthetised swine (+)-VX and (-)-VX could be quantified up to 720 min.
Human & Experimental Toxicology | 2008
Stephen Bjarnason; John Mikler; I Hill; Catherine Tenn; M. Garrett; N Caddy
An anesthetized domestic swine model was used to compare the efficacy and cross-contamination potential of selected skin decontaminant products and regimens against the chemical warfare agent, VX. Animals topically exposed to 2×, 3× or 5× LD50 VX showed typical signs of organophosphate nerve agent poisoning, including miosis, salivation, mastication, dysrhythmias, and respiratory distress prior to death. Animals were exposed to 5× LD50 VX and then decontaminated 45 min later with the reactive skin decontamination lotion (RSDL®), Fuller’s earth (FE), 0.5% hypochlorite, or soapy water. Survival was 100% when the reactive skin decontamination lotion or FE was utilized, although 50% of Fuller’s earth-decontaminated animals exhibited serious signs of VX poisoning. Decontamination of VX-treated animals with 0.5% hypochlorite was less effective but also increased survival. Soapy water was ineffective in preventing lethality. Blood cholinesterase levels were not predictive of clinical outcome in decontaminated animals. The potential of “decontaminated” VX in open wounds to cause poisoning was assessed by vigorously mixing 5× LD50 VX with the test decontaminants for 5 min and then placing the mixture onto a full-thickness skin wound. Soapy water was ineffective in preventing lethality. Although treatment with dry Fuller’s earth prevented death and all signs of organophosphate poisoning, a significant proportion of treated animals decontaminated with Fuller’s earth in aqueous suspension exhibited serious signs of organophosphate poisoning, suggesting that live agent may be desorbed from Fuller’s earth when it is exposed to a liquid environment. Animals treated with reactive skin decontamination lotion or 0.5% hypochlorite-VX mixtures showed no signs of organophosphate poisoning during the 6- h test period.
Journal of Chromatography B | 2011
Georg Reiter; John Mikler; Ira Hill; Kendal Weatherby; Horst Thiermann; Franz Worek
The present study was initiated to develop a sensitive and highly selective method for the simultaneous quantification of the nerve agent VX (O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate) and its toxic metabolite (EA-2192) in blood and plasma samples in vivo and in vitro. For the quantitative detection of VX and EA-2192 the resolution was realized on a HYPERCARB HPLC phase. A specific procedure was developed to isolate both toxic analytes from blood and plasma samples. The limit of detection was 0.1 pg/ml and the absolute recovery of the overall sample preparation procedure was 74% for VX and 69% for EA-2192. After intravenous and percutaneous administration of a supralethal doses of VX in anaesthetised swine both VX and EA-2192 could be quantified over 540 min following exposure. This study is the first to verify the in vivo formation of the toxic metabolite EA-2192 after poisoning with the nerve agent VX. Further toxicokinetic and therapeutic studies are required in order to determine the impact of EA-2192 on the treatment of acute VX poisoning.
Toxicology Letters | 2010
Oliver Tenberken; John Mikler; Ira Hill; Kendal Weatherby; H. Thiermann; Franz Worek; Georg Reiter
In the present study, we report the first in vivo toxicokinetic study of tabun (O-ethyl-N,N-dimethylphosphoramidocyanidate). The toxicokinetics of the enantiomers of tabun were investigated in anesthetized swine after intravenous administration of 3xLD(50) (161.4mug/kg) tabun. Blood samples were taken for gas chromatographic-mass spectrometric determination of the tabun enantiomers and for measurement of the activity of red blood cell acetylcholinesterase (AChE) and plasma butyrylcholinesterase (BChE). The tabun enantiomers could be quantified in swine blood to a minimum concentration of 3.0pg/ml (18.5pM) and could be detected to a minimum concentration of 1.0pg/ml (6.2pM). The concentration-time profiles of both tabun enantiomers were best described by a bi-exponential equation. The elimination of (+)-tabun and (-)-tabun were comparable in the initial phase. In the terminal phase a remarkable difference was found, with terminal half lives of 11.5min for (+)-tabun and 23.1min for (-)-tabun. (+)-Tabun showed a markedly longer persistence in vivo than (+)-enantiomers of other G-type nerve agents and could be detected in all swine at least up to 30min post-injection, (-)-tabun at least up to 90min post-injection. These results demonstrate a rather rapid elimination of tabun enantiomers in vivo and may provide a toxicokinetic basis for the further development and optimization of medical countermeasures against this nerve agent.
Analytical Biochemistry | 2013
Wei Jiang; Ekaterina A. Murashko; Yaroslav A. Dubrovskii; Ekaterina P. Podolskaya; Vladimir N. Babakov; John Mikler; Florian Nachon; Patrick Masson; Lawrence M. Schopfer; Oksana Lockridge
Exposure to nerve agents or organophosphorus (OP) pesticides can have life-threatening effects. Human plasma butyrylcholinesterase (BChE) inactivates these poisons by binding them to Ser198. After hours or days, these OP adducts acquire a negative charge by dealkylation in a process called aging. Our goal was to develop a method for enriching the aged adduct to facilitate detection of exposure. Human BChE inhibited by OP toxicants was incubated for 4 days to 6 years. Peptides produced by digestion with pepsin were enriched by binding to titanium oxide (TiO2) and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It was found that with two exceptions, all aged OP adducts in peptide FGES198AGAAS were enriched by binding to Titansphere tips. Cresyl saligenin phosphate yielded two types of aged adduct, cresylphosphate and phosphate, but only the phosphate adduct bound to Titansphere. The nerve agent VR yielded no aged adduct, supporting crystal structure findings that the VR adduct on BChE does not age. The irreversible nature of aged OP adducts was demonstrated by the finding that after 6 years at room temperature in sterile pH 7.0 buffer, the adducts were still detectable. It was concluded that TiO2 microcolumns can be used to enrich aged OP-modified BChE peptide.
Toxicology Letters | 2011
John Mikler; Catherine Tenn; Franz Worek; Georg Reiter; H. Thiermann; M. Garrett; S. Bohnert; T.W. Sawyer
The chemical weapon nerve agent known as Russian VX (VR) is a potent organophosphorus (OP) compound that is much less studied than its VX analogue with respect to toxicity, as well as to the effectiveness of several known countermeasures against it. An anaesthetized domestic swine model was utilized to assess several approaches in mitigating its toxicity, including the utility of cooling VR treated skin to increase the therapeutic window for treatment. The 6h LD₅₀ for VR topically applied on the ear was 100 μg/kg. Treatment of VR exposed animals (5 × LD₅₀) with pralidoxime (2PAM) very poorly regenerated inhibited blood cholinesterase activity, but was partially effective in preventing signs of OP poisoning and increasing survival. In contrast, treatment with the Hagedorn oxime HI-6 reactivated cholinesterase, eliminated all signs of poisoning and prevented death. Decontamination with the Reactive Skin Decontaminant Lotion (RSDL) 15 min after VR exposure was completely effective in preventing death. Cooling of the VR exposure sites for 2 or 6h prevented signs of OP poisoning and death during the cooling period. However, these animals died very quickly after the cessation of cooling, unless they were treated with oxime or decontaminated with RSDL. Blood analyses showed that cooling of agent exposure sites delayed the entry of VR into the bloodstream. Medical treatment with HI-6 and to a lesser extent 2PAM, or decontamination with RSDL are effective in protecting against the toxic effects of cutaneous exposure to VR. Immobilizing this agent (and related compounds) within the dermal reservoir by cooling the exposure sites, dramatically increases the therapeutic window in which these medical countermeasures are effective.
Journal of Chromatography B | 2010
Sara Bohnert; Cory Vair; John Mikler
A rapid and small volume assay to quantify HI-6 in plasma was developed to further the development and licensing of an intravenous formulation of HI-6. The objective of this method was to develop a sensitive and rapid assay that clearly resolved HI-6 and an internal standard in saline and plasma matrices. A fully validated method using ion-pair HPLC and 2-PAM as the internal standard fulfilled these requirements. Small plasma samples of 35 microL were extracted using acidification, filtration and neutralization. Linearity was shown for over 4 microg/mL to 1mg/mL with accuracy and precision within 6% relative error at the lower limit of detection. This method was utilized in the pharmacokinetic analysis HI-6 dichloride (2Cl) and HI-6 dimethane sulfonate (DMS) in anaesthetized guinea pigs and domestic swine following an intravenous bolus administration. From the resultant pharmacokinetic parameters a target plasma concentration of 100 microM was established and maintained in guinea pigs receiving an intravenous infusion. This validated method allows for the analysis of low volume samples, increased sample numbers and is applicable to the determination of pharmacokinetic profiles and parameters.
Toxicology Letters | 2011
T.W. Sawyer; John Mikler; Franz Worek; Georg Reiter; H. Thiermann; Catherine Tenn; Kendal Weatherby; S. Bohnert
The organophosphate (OP) nerve agent VX is a weaponized chemical warfare agent that has also been used by terrorists against civilians. This contact poison produces characteristic signs of OP poisoning, including miosis, salivation, mastication, dysrhythmias and respiratory distress prior to death. Although successful treatment of OP poisoning can be obtained through decontamination and/or oxime reactivation of agent-inhibited cholinesterase, medical countermeasures that increase the therapeutic window for these measures would be of benefit. An anaesthetized swine model was utilized to examine the effects of lethal VX exposure to the skin, followed by cooling the exposure site prior to decontamination or treatment. The cooling was simply accomplished by using crushed ice in grip-seal plastic bags applied to the exposure sites. Cooling of skin exposed to lethal doses of VX significantly increased the window of opportunity for successful decontamination using the Reactive Skin Decontaminant Lotion(®) (RSDL(®)) or treatment with the oxime antidotes HI-6 and 2PAM. Analyses of blood VX levels showed that cooling acted to slow or prevent the entry of VX into the bloodstream from the skin. If the exposure site is known, the simple and non-invasive application of cooling provides a safe means with which to dramatically increase the therapeutic window in which decontamination and/or antidote treatment against VX are life-saving.
Toxicology | 2012
John Mikler; Catherine Tenn; Stephen Bjarnason; Robert Frew
The protective effects of selected anesthetic regimens on sarin (GB) were investigated in domestic swine. At 30% oxygen, the toxicity of this agent in isoflurane anesthetized animals (LD(50)=10.1μg/kg) was similar to literature sited values in awake swine (LD(50)=11.8μg/kg) and slightly higher than that of both ketamine (LD(50)=15.6μg/kg) and propofol (LD(50)=15.3μg/kg) anesthetized swine. Use of 100% oxygen in ketamine anesthetized animals resulted in three-fold protective effects compared to 30% oxygen. Use of 100% oxygen in both isoflurane and propofol anesthetized animals, compared to 30% resulted in profound protection against GB poisoning (>33×). There were no differences in the severity of the poisoning or recovery time in animals treated over dose ranges of 10-350μg/kg (isoflurane) or 15-500μg/kg GB (propofol). Survivors of high GB challenges that were revived from propofol anesthetic exhibited no signs of cognitive impairment seven days later. Protective treatments did not attenuate cholinesterase (ChE) inhibition; survivors of otherwise supralethal GB concentrations exhibited very low blood ChE activities. This work indicates that propofol has protective effects against GB, and that oxygen tension may have an important role in treating nerve agent casualties. More importantly, it demonstrates that non-cholinergic protective mechanisms exist that may be exploited in the future development of medical countermeasures against organophosphorous nerve agents.