Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Mortensen is active.

Publication


Featured researches published by John Mortensen.


Tellus B | 2011

Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern oceans

Søren Rysgaard; Jørgen Bendtsen; Bruno Delille; Gerhard Dieckmann; Ronnie N. Glud; Hilary Kennedy; John Mortensen; S. Papadimitriou; David N. Thomas; Jean-Louis Tison

Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO2 and the subsequent effect on air–sea CO2 exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air–sea CO2 exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO2 uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO2 uptake in ice-free polar seas. This sea-ice driven CO2 uptake has not been considered so far in estimates of global oceanic CO2 uptake. Net CO2 uptake in sea-ice–covered oceans can be driven by; (1) rejection during sea–ice formation and sinking of CO2-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air–sea CO2 exchange during winter, and (3) release of CO2-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO2 drawdown during primary production in sea ice and surface oceanic waters.


Nature Communications | 2016

Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation.

Qian Yang; Timothy H. Dixon; Paul G. Myers; Jennifer A. Bonin; Don P. Chambers; M. R. van den Broeke; Mads H. Ribergaard; John Mortensen

The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenlands ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.


Journal of Climate | 2015

Quantifying Energy and Mass Fluxes Controlling Godthåbsfjord Freshwater Input in a 5-km Simulation (1991–2012)*,+

Peter L. Langen; Ruth Mottram; Jesper Christensen; Fredrik Boberg; C. B. Rodehacke; Martin Stendel; D. van As; Andreas P. Ahlstrøm; John Mortensen; Søren Rysgaard; Dorthe Petersen; K. H. Svendsen; Guðfinna Aðalgeirsdóttir; John Cappelen

AbstractFreshwater runoff to fjords with marine-terminating glaciers along the Greenland Ice Sheet margin has an impact on fjord circulation and potentially ice sheet mass balance through increasing heat transport to the glacier front. Here, the authors use the high-resolution (5.5 km) HIRHAM5 regional climate model, allowing high detail in topography and surface types, to estimate freshwater input to Godthabsfjord in southwest Greenland. Model output is compared to hydrometeorological observations and, while simulated daily variability in temperature and downwelling radiation shows high correlation with observations (typically >0.9), there are biases that impact the results. In particular, overestimated albedo leads to underestimation of melt and runoff at low elevations.In the model simulation (1991–2012), the ice sheet experiences increasing energy input from the surface turbulent heat flux (up to elevations of 2000 m) and shortwave radiation (at all elevations). Southerly wind anomalies and declining ...


Journal of Geophysical Research | 2002

Recent changes in the surface salinity of the North Atlantic subpolar gyre

Gilles Reverdin; Fabien Durand; John Mortensen; Friedrich Schott; H. Valdimarsson; Walter Zenk

Sea surface salinity (SSS) was measured since 1896 along 60°N between Greenland and the North Sea and since 1993 between Iceland and Newfoundland. Along 60°N away from the shelves, and north of 53°N, the amplitude of the seasonal cycle is comparable to or less than interannual variability. In these parts of the North Atlantic subpolar gyre, large-scale deviations from the seasonal cycle correlate from one season to the next. This suggests that in these regions, summer and autumn surface data are useful for monitoring changes in upper ocean salinity best diagnosed from less common winter surface data. Further south near the subarctic front, the Labrador Current or near shelves where seasonal variability is strong, this is not the case. Along 60°N, the multiannual low-frequency variability is well correlated across the basin and exhibits fresher surface water since the mid 1970s than in the late 1920s to 1960s. SSS in the Irminger Sea along 60°N lags by 1-year SSS farther east in the Iceland Basin. Variability between Iceland and Newfoundland within the Irminger Sea north of 54°N presents similar characteristics to what is observed along 60°N. Variability near the northwest corner of the North Atlantic Current (52°N/45°W) is larger and is not correlated to what is found further north. Maps of SSS were constructed for a few recent seasons between July 1996 and June 2000, which illustrate the fresh conditions found usually during that period across the whole North Atlantic subpolar gyre, although this includes an episode of higher salinity. The SSS anomaly maps have large uncertainties but suggest that the highest SSS occurred before the spring of 1998 in the Iceland Basin, and after that, in the Irminger Sea. This is followed by fresher conditions, first in the Labrador and Iceland Basin, reaching recently the Irminger Sea.


Journal of Geophysical Research | 2014

Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N)

John Mortensen; Jørgen Bendtsen; Kunuk Lennert; Søren Rysgaard

Many tidewater outlet glacier fjords surround the coast of Greenland, and their dynamics and circulation are of great importance for understanding the heat transport toward glaciers from the ice sheet. Thus, fjord circulation is a critical aspect for assessing the threat of global sea level rise due to melting of the ice sheet. However, very few observational studies describe the seasonal dynamics of fjord circulation. Here we present the first continuous current measurements (April–November) from a deep mooring deployed in a west Greenland tidewater outlet glacier fjord. Four distinct circulation phases are identified during the period, and they are related to exchange processes with coastal waters, tidal mixing, and melt processes on the Greenland Ice Sheet. During early summer, warm intermediate water is transported toward the glacier at an average velocity of about 7 cm s−1. In late summer, the average velocity decreases to 3 cm s−1 during a period with significant subglacial freshwater discharges. During this period, a large variability in current velocities is also observed. The associated average heat transport in an intermediate-depth range corresponds to 568 GW in early summer and is reduced to 287 GW in late summer. These heat fluxes are at the higher end of previously reported fluxes. Our measurements show that the intermediate heat transport varies over time and during summer provides a major contribution to the heat budget and, thereby, potentially to glacial melt. We suggest that intermediate heat transport may play a similar important role in other fjords around Greenland.


Geophysical Research Letters | 2015

Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge

Jørgen Bendtsen; John Mortensen; Kunuk Lennert; Søren Rysgaard

The melting of tidewater outlet glaciers from the Greenland Ice Sheet contributes significantly to global sea level rise. Accelerated mass loss is related to melt processes in front of calving glaciers, yet the role of ocean heat transports is poorly understood. Here we present the first direct measurements from a subglacial plume in front of a calving tidewater outlet glacier. Surface salinity in the plume corresponded to a meltwater content of 7%, which is indicative of significant entrainment of warm bottom water and, according to plume model calculations, significant ice melt. Energy balance of the area near the glacier showed that ice melt was mainly due to ocean heat transport and that direct plume-associated melt was only important in periods with high meltwater discharge rates of ~100 m3 s−1. Ocean mixing outside of the plume area was thus the primary heat source for melting glacier ice.


Journal of Geophysical Research | 2014

Ice‐dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland

Kristian K. Kjeldsen; John Mortensen; Jørgen Bendtsen; D. Petersen; Kunuk Lennert; Søren Rysgaard

The drainage of ice-dammed lakes in the form of outburst floods in Greenland is detected regularly by remote sensing, and these events are expected to occur more frequently in a warmer climate. However, their impact on ice sheet stability and neighboring water bodies is still unknown. In this interdisciplinary study, we investigate lake drainages from the Greenland Ice Sheet into a west Greenland fjord by analyzing simultaneous time series of satellite observations and direct hydrographic measurements of temperature and salinity in the fjord. Satellite images show that, in general, lake drainages have occurred quasiperiodically during the last decade. A particular sequence of drainage events was observed by satellite in 2009 and was analyzed together with the first direct hydrographic observations. Signs of ice-dammed lake drainages were observed by a downstream mooring located just below the intertidal zone. The release of freshwater occurred at the fjord subsurface at a tidewater outlet glacier. The downstream in-water sequence of property changes in relation to these drainage events was observed as an almost immediate decrease in surface layer temperature (~2°C) followed within a week by the arrival of a high-saline pulse (~ +5 units) with elevated salinity lasting for several days during the passage. During lake drainages, large amounts of relatively warm and saline intermediate water are brought to the near-surface layers by entrainment processes near the glacier front, and this influences the hydrography of the fjord but also impacts the ecosystem through upwelling of nutrient-rich intermediate water.


Journal of Geophysical Research | 2014

Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N)†

Jørgen Bendtsen; John Mortensen; Søren Rysgaard

Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near the coast are also difficult to measure due to the presence of icebergs and sea ice. Measurements from the Zackenberg Research station, located in Young Sound/Tyrolerfjord in northeast Greenland (74°N), provide some of the few observations of hydrographic, hydrologic, and atmospheric parameters from this remote area. Here we analyze measurements from the fjord and also measurements in the ambient water masses, which are found in the outer fjord and between the fjord and the East Greenland Current and validate and apply a numerical model of the fjord. A model sensitivity study allows us to constrain runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show that residence time of river water during the summer period is about 1 month in the inner part of the fjord.


Global Change Biology | 2017

Marine‐terminating glaciers sustain high productivity in Greenland fjords

Lorenz Meire; John Mortensen; Patrick Meire; Thomas Juul-Pedersen; Mikael K. Sejr; Søren Rysgaard; Rasmus Nygaard; Philippe Huybrechts; Filip J. R. Meysman

Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an increasing input of glacial meltwater to the fjords and coastal waters around Greenland. These high latitude ecosystems are highly productive and sustain important fisheries, yet it remains uncertain how they will respond to future changes in the Arctic cryosphere. Here we show that marine-terminating glaciers play a crucial role in sustaining high productivity of the fjord ecosystems. Hydrographic and biogeochemical data from two fjord systems adjacent to the Greenland ice sheet, suggest that marine ecosystem productivity is very differently regulated in fjords influenced by either land-terminating or marine-terminating glaciers. Rising subsurface meltwater plumes originating from marine-terminating glaciers entrain large volumes of ambient deep water to the surface. The resulting upwelling of nutrient-rich deep water sustains a high phytoplankton productivity throughout summer in the fjord with marine-terminating glaciers. In contrast, the fjord with only land-terminating glaciers lack this upwelling mechanism, and is characterized by lower productivity. Data on commercial halibut landings support that coastal regions influenced by large marine-terminating glaciers have substantially higher marine productivity. These results suggest that a switch from marine-terminating to land-terminating glaciers can substantially alter the productivity in the coastal zone around Greenland with potentially large ecological and socio-economic implications.


Journal of Geophysical Research | 2016

Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland)

Lorenz Meire; John Mortensen; Søren Rysgaard; Jørgen Bendtsen; Wieter Boone; Patrick Meire; Filip J. R. Meysman

In high-latitude fjord ecosystems, the spring bloom accounts for a major part of the annual primary production and thus provides a crucial energy supply to the marine food web. However, the environmental factors that control the timing and intensity of these spring blooms remain uncertain. In 2013, we studied the spring bloom dynamics in Godthabsfjord, a large fjord system adjacent to the Greenland Ice Sheet. Our surveys revealed that the spring bloom did not initiate in the inner stratified part of the fjord system but only started farther away from tidewater outlet glaciers. A combination of out-fjord winds and coastal inflows drove an upwelling in the inner part of the fjord during spring (April–May), which supplied nutrient-rich water to the surface layer. This surface water was subsequently transported out-fjord, and due to this circulation regime, the biomass accumulation of phytoplankton was displaced away from the glaciers. In late May, the upwelling weakened and the dominant wind direction changed, thus reversing the direction of the surface water transport. Warmer water was now transported toward the inner fjord, and a bloom was observed close to the glacier terminus. Overall, our findings imply that the timing, intensity, and location of the spring blooms in Godthabsfjord are controlled by a combination of upwelling strength and wind forcing. Together with sea ice cover, the hydrodynamic regime hence plays a crucial role in structuring food web dynamics of the fjord ecosystem.

Collaboration


Dive into the John Mortensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge