Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John N. Flanagan is active.

Publication


Featured researches published by John N. Flanagan.


The Lancet | 2001

25-hydroxyvitamin D-1α-hydroxylase in normal and malignant colon tissue

Vin Tangpricha; John N. Flanagan; Lyman W. Whitlatch; Chi C Tseng; Tai C. Chen; Peter R. Holt; Martin Lipkin; Michael F. Holick

Summary Vitamin D affects calcium metabolism and prevents proliferation of colon cells in vitro. In human beings the main circulating form of vitamin D is 25-hydroxyvitamin D; to regulate calcium homoeostasis, this form must be converted to 1α, 25-dihydroxyvitamin D by 1α-hydroxylation in the kidney with 25-hydroxyvitamin D-1α-hydroxylase. Cultured transformed colon cancer cells can convert 25-hydroxyvitamin D 3 to 1α,25-dihydroxyvitamin D 3 . We identified messenger RNA (mRNA) for 25-hydroxyvitamin D-1α-hydroxylase in normal colon tissue and in malignant and adjacent normal colon tissue. These findings support the notion that vitamin D might have a role in cell growth regulation and cancer protection, and might be the explanation for why the risk of dying from colorectal cancer is highest in areas with the least amount of sunlight.


Journal of Cellular Biochemistry | 2003

Prostatic 25‐hydroxyvitamin D‐1α‐hydroxylase and its implication in prostate cancer

Tai C. Chen; Lilin Wang; Lyman W. Whitlatch; John N. Flanagan; Michael F. Holick

Evidence suggests that vitamin D may have a protective role for prostate cancer. 1α,25‐Dihydroxyvitamin D [1α,25(OH)2D] inhibits growth and induces differentiation of prostate cells. 25‐Hydroxyvitamin D‐1α‐hydroxylase [1α‐OHase], the enzyme that is responsible for the synthesis of 1α,25(OH)2D, is expressed in cultured prostate cells. We observed a marked decrease in 1α‐OHase activity in prostate cancer cells, suggesting some defect of the 1α‐OHase in these cells. To investigate whether the defect was due to dysregulation of the enzyme at the promoter level, a series of deletion constructs of the promoter was synthesized and incorporated upstream into the luciferase reporter gene. Two regions were identified with high basal activity in transfected normal prostate cell line (PZHPV‐7), −1100 bp (AN2), and −394 bp (AN5) upstream of ATG start site of the 1α‐OHase gene. When the reporter gene with either AN2 or AN5 was transfected into prostate cancer cell lines, we observed a lower basal promoter activity in PC‐3 cells and DU145 cells than that found in PZHPV‐7 cells for both constructs, and a loss of promoter activity in LNCaP cells. Thus, the results suggest that the defect in enzyme activity may result from the decreased promoter activity in prostate cancer cells. J. Cell. Biochem. 88: 315–322, 2003.


Molecular and Cellular Endocrinology | 2008

Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes.

Vandana Gupta; Shalender Bhasin; Wen Guo; Rajan Singh; Rika Miki; Pratibha Chauhan; Karen Choong; Tamara Tchkonia; Nathan K. LeBrasseur; John N. Flanagan; James A. Hamilton; Navjot S. Narula; James L. Kirkland; Ravi Jasuja

UNLABELLED The mechanisms by which androgens regulate fat mass are poorly understood. Although testosterone has been reported to increase lipolysis and inhibit lipid uptake, androgen effects on proliferation and differentiation of human mesenchymal stem cells (hMSCs) and preadipocytes have not been studied. Here, we investigated whether dihydrotestosterone (DHT) regulates proliferation, differentiation, or functional maturation of hMSCs and human preadipocytes from different fat depots. DHT (0-30 nM) dose-dependently inhibited lipid accumulation in adipocytes differentiated from hMSCs and downregulated expression of aP2, PPARgamma, leptin, and C/EBPalpha. Bicalutamide attenuated DHTs inhibitory effects on adipogenic differentiation of hMSCs. Adipocytes differentiated in presence of DHT accumulated smaller oil droplets suggesting reduced extent of maturation. DHT decreased the incorporation of labeled fatty acid into triglyceride, and downregulated acetyl CoA carboxylase and DGAT2 expression in adipocytes derived from hMSCs. DHT also inhibited lipid accumulation and downregulated aP2 and C/EBPalpha in human subcutaneous, mesenteric and omental preadipocytes. DHT stimulated forskolin-stimulated lipolysis in subcutaneous and mesenteric preadipocytes and inhibited incorporation of fatty acid into triglyceride in adipocytes differentiated from preadipocytes from all fat depots. CONCLUSIONS DHT inhibits adipogenic differentiation of hMSCs and human preadipocytes through an AR-mediated pathway, but it does not affect the proliferation of either hMSCs or preadipocytes. Androgen effects on fat mass represent the combined effect of decreased differentiation of fat cell precursors, increased lipolysis, and reduced lipid accumulation.


The Journal of Steroid Biochemistry and Molecular Biology | 2002

25-Hydroxyvitamin D-1α-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer

Lyman W Whitlatch; Michael V. Young; Gary G. Schwartz; John N. Flanagan; Kerry L. Burnstein; Bal L. Lokeshwar; Edwin S. Rich; Michael F. Holick; Tai C. Chen

The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.


Journal of Applied Physiology | 2010

Effects of 3 days unloading on molecular regulators of muscle size in humans

Thomas Gustafsson; Ted Österlund; John N. Flanagan; F. von Walden; Todd A. Trappe; Richard M. Linnehan; Per A. Tesch

Changes in skeletal muscle mass are controlled by mechanisms that dictate protein synthesis or degradation. The current human study explored whether changes in activation of the phosphoinositide 3-kinase (PI3K)-Akt1, p38, myostatin, and mRNA expression of markers of protein degradation and synthesis occur soon after withdrawal of weight bearing. Biopsies of the vastus lateralis muscle (VL) and soleus muscle (Sol) were obtained from eight healthy men before and following 3 days of unilateral lower limb suspension (ULLS). Akt1, Forkhead box class O (FOXO)-1A, FOXO-3A, p38, and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) phosphorylation and protein levels and myostatin protein level were analyzed by Western blot. Levels of mRNA of IGF1, FOXO-1A, FOXO-3A, atrogin-1, MuRF-1, caspase-3, calpain-2, calpain-3, 4E-BP1, and myostatin were measured using real-time PCR. The amounts of phosphorylated Akt1, FOXO-1A, FOXO-3A, and p38 were unaltered (P>0.05) after ULLS. Similarly, mRNA levels of IGF1, FOXO-1A, FOXO-3A, caspase-3, calpain-2, and calpain-3 showed no changes (P>0.05). The mRNA levels of atrogin-1 and MuRF-1, as well as the mRNA and protein phosphorylation of 4E-BP1, increased (P<0.05) in VL but not in Sol. Both muscles showed increased (P<0.05) myostatin mRNA and protein following ULLS. These results suggest that pathways other than PI3K-Akt stimulate atrogin-1 and MuRF-1 expression within 3 days of ULLS. Alternatively, transient changes in these pathways occurred in the early phase of ULLS. The increased myostatin mRNA and protein expression also indicate that multiple processes are involved in the early phase of muscle wasting. Further, the reported difference in gene expression pattern across muscles suggests that mechanisms regulating protein content in human skeletal muscle are influenced by phenotype and/or function.


Journal of Biological Chemistry | 2008

The Effects of Myostatin on Adipogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells Are Mediated through Cross-communication between Smad3 and Wnt/β-Catenin Signaling Pathways

Wen Guo; John N. Flanagan; Ravi Jasuja; James L. Kirkland; Lan Jiang; Shalender Bhasin

The effects of myostatin on adipogenic differentiation are poorly understood, and the underlying mechanisms are unknown. We determined the effects of human recombinant myostatin protein on adipogenesis of bone marrow-derived human mesenchymal stem cells (hMSCs) and adipose tissue-derived preadipocytes. For both progenitor cell types, differentiation in the presence of myostatin caused a dose-dependent reduction of lipid accumulation and diminished incorporation of exogenous fatty acid into cellular lipids. Myostatin significantly down-regulated the expression of adipocyte markers PPARγ, C/EBPα, leptin, and aP2, but not C/EBPβ. Overexpression of PPARγ, but not C/EBPβ, blocked the inhibitory effects of myostatin on adipogenesis. Myostatin induced phosphorylation of Smad3 in hMSCs; knockdown of Smad3 by RNAi or inhibition of its upstream kinase by an Alk5 inhibitor blocked the inhibitory effect of myostatin on adipogenesis in hMSCs, implying an important role of Smad3 activation in this event. Furthermore, myostatin enhanced nuclear translocation of β-catenin and formation of the Smad3-β-catenin-TCF4 complex, together with the altered expression of a number of Wnt/β-catenin pathway genes in hMSCs. The inhibitory effects of myostatin on adipogenesis were blocked by RNAi silencing of β-catenin and diminished by overexpression of dominant-negative TCF4. The conclusion is that myostatin inhibited adipogenesis in human bone marrow-derived mesenchymal stem cells and preadipocytes. These effects were mediated, in part, by activation of Smad3 and cross-communication of the TGFβ/Smad signal to Wnt/β-catenin/TCF4 pathway, leading to down-regulation of PPARγ.


The Journal of Clinical Endocrinology and Metabolism | 2009

Role of Follistatin in Promoting Adipogenesis in Women

John N. Flanagan; Kristina Linder; Niklas Mejhert; Elisabeth Dungner; Kerstin Wåhlén; Pauline Decaunes; Mikael Rydén; Peyman Björklund; Stefan Arver; Shalender Bhasin; Anne Bouloumié; Peter Arner; Ingrid Dahlman

CONTEXT Follistatin is a glycoprotein that binds and neutralizes biological activities of TGFbeta superfamily members including activin and myostatin. We previously identified by expression profiling that follistatin levels in white adipose tissue (WAT) were regulated by obesity. OBJECTIVE The objective of the study was to elucidate the role of follistatin in human WAT and obesity. DESIGN We measured secreted follistatin protein from WAT biopsies and fat cells in vitro. We also quantified follistatin mRNA expression in sc and visceral WAT and in WAT-fractionated cells and related it to obesity status, body region, and cellular origin. We investigated the effects of follistatin on adipocyte differentiation of progenitor cells in vitro. PARTICIPANTS Women (n = 66) with a wide variation in body mass index were recruited by advertisement and from a clinic for weight-reduction therapy. RESULTS WAT secreted follistatin in vitro. Follistatin mRNA levels in sc but not visceral WAT were decreased in obesity and restored to nonobese levels after weight reduction. Follistatin mRNA levels were high in the stroma-vascular fraction of WAT and low in adipocytes. Recombinant follistatin treatment promoted adipogenic differentiation of progenitor cells and neutralized the inhibitory action of myostatin on differentiation in vitro. Moreover, activin and myostatin signaling receptors were detected in WAT and adipocytes. CONCLUSION Follistatin is a new adipokine important for adipogenesis. Down-regulated WAT expression of follistatin in obesity may counteract adiposity but could, by inhibiting adipogenesis, contribute to hypertrophic obesity (large fat cells) and insulin resistance.


Recent results in cancer research | 2003

Regulation of the 25-hydroxyvitamin D-1alpha-hydroxylase gene and its splice variant.

John N. Flanagan; Lilin Wang; Tangpricha; Jörg Reichrath; Tai C. Chen; Michael F. Holick

The 25-hydroxyvitamin D-1alpha-OHase (1alpha-OHase) is responsible for producing the active form of vitamin D, 1alpha,25-dihydroxyvitamin D. The enzyme not only is expressed in kidneys, but also is expressed in many nonrenal tissues, including skin. In this study, we compared the regulation of the 1alpha-OHase expression in kidney cells and keratinocytes. Using transfected luciferase reporter gene constructs, we compared the activity and regulatory features of the human 1alpha-OHase gene promoter in C-21 human kidney cells (PTH/PTHrP receptor positive) and cultured human keratinocytes (NHKs). We found that two regions, -1,100 bp and -396 bp from the ATG, were highly sensitive to parathyroid hormone (PTH) in C-21 cells but not in NHK. Furthermore, three CRE-like sequences (CLS) were identified within this PTH-sensitive area of the 1alpha-OHase promoter and when deleted they reduced induction of PTH by 50%-95% in C-21 cells. To further investigate the differential regulation profile, we examined the protein products of 1alpha-OHase in kidney and skin. Western blot analysis of whole cell extracts from these tissues with a 1alpha-OHase-specific antibody revealed the predicted 1alpha-OHase protein product of 56 kDa in kidney and a larger protein product of 59 kDa in skin. Using RT-PCR for the 1alpha-OHase in skin and kidney, we detected an insertion between exons 2 and 3 in skin but not in kidney. These results suggest that the regulation of renal and skin 1alpha-OHase gene expression may be tissue specific and possibly produce different splice variants, and that this specificity is likely conferred by differential expression of CRE-binding proteins in different cell types. In conclusion, the differential tissue expression of 1alpha-OHase gene variants and the tissue-specific regulation profile open up a new paradigm in the understanding of the role of 25-hydroxyvitamin D3 1alpha-hydroxylase gene in the regulation of vitamin D physiology.


The Journal of Steroid Biochemistry and Molecular Biology | 2011

Substitution at carbon 2 of 19-nor-1α,25-dihydroxyvitamin D3 with 3-hydroxypropyl group generates an analogue with enhanced chemotherapeutic potency in PC-3 prostate cancer cells

Diego Iglesias-Gato; Shasha Zheng; John N. Flanagan; Lan Jiang; Atsushi Kittaka; Toshiyuki Sakaki; Keiko Yamamoto; Toshimasa Itoh; Nathan K. LeBrasseur; Gunnar Norstedt; Tai C. Chen

The active form of vitamin D(3), 1α,25-dihydroxyvitamin D(3)(1α,25(OH)(2)D(3)), has anti-proliferative and anti-invasive activities in prostate cancer cells. Because of 1α,25(OH)(2)D(3) therapeutic potential in treating cancers, numerous analogues have been synthesized with an attempt to increase anti-proliferative and/or decrease calcemic properties. Among these analogues, 19-nor-1α,25(OH)(2)D(2) while being less calcemic has equivalent potency as 1α,25(OH)(2)D(3) in several in vitro and in vivo systems. We recently showed that 19-nor-2α-(3-hydroxypropyl)-1α,25(OH)(2)D(3) (MART-10) was at least 500-fold and 10-fold more active than 1α,25(OH)(2)D(3) in inhibiting the proliferation of an immortalized normal prostate PZ-HPV-7 cells and the invasion of androgen insensitive PC-3 prostate cancer cells, respectively. In this study, we further investigated the effects of MART-10 and 1α,25(OH)(2)D(3) on the dose- and time-dependent induction of CYP24A1 gene expression in PC-3 prostate cancer cells. We found that MART-10 induced CYP24A1 gene expression at a lower concentration with a longer duration compared to 1α,25(OH)(2)D(3), suggesting that MART-10 is less susceptible to CYP24A1 degradation. Molecular docking model of human CYP24A1 and MART-10 indicates that its side chain is far away from the heme ion and is less likely to be hydroxylated by the enzyme. Furthermore, MART-10 was a more potent inhibitor of PC-3 cell proliferation and invasion compared to 1α,25(OH)(2)D(3). In addition, MART-10 down-regulated matrix metalloproteinase-9 (MMP-9) expression which could be one mechanism whereby MART-10 influences cancer cell invasion. Finally, we observed that subcutaneous administration of MART-10 up-regulated the CYP24A1 mRNA expression in rat kidneys without affecting their plasma calcium levels. Thus, our findings demonstrate that MART-10 is biologically active in vivo and may be an effective vitamin D analogue for clinical trials to treat prostate cancer.


The Journal of Steroid Biochemistry and Molecular Biology | 2013

MART-10, a novel vitamin D analog, inhibits head and neck squamous carcinoma cells growth through cell cycle arrest at G0/G1 with upregulation of p21 and p27 and downregulation of telomerase

Kun-Chun Chiang; Chun-Nan Yeh; Jun-Te Hsu; Li-Wei Chen; Sheng-Fong Kuo; Chi-Chin Sun; Cheng-Cheng Huang; Jong-Hwei S. Pang; John N. Flanagan; Masashi Takano; Atsushi Kittaka; Horng-Heng Juang; S.-W. Yang; Tai C. Chen

For the head and neck squamous cell carcinoma (HNSCC), surgery in combination with radiation therapy is the current standard treatment. However, the complex anatomy and important functions over the head and neck region often make HNSCC patients with severe comorbidities. Even after aggressive treatment, the 5year survival for HNSCC patients is only around 61%. Thus, new therapeutic regimens against HNSCC are urgently needed. 1α,25-Dihydroxyvitamin D3 [1α,25(OH)2D3] is a potent anti-tumor agent in a variety of pre-clinical studies, but its clinical application is impeded by hypercalcemic side effect. A new class of less-calcemic 1α,25(OH)2D3 analog, MART-10 (19-nor-2α-(3-hydroxypropyl)- 1α,25-Dihydroxyvitamin D3), has been shown to be much more potent than 1α,25(OH)2D3 in inhibiting cancer cell growth in vitro and in vivo without inducing hypercalcemia. In this study, we compared the antiproliferative activity of MART-10 with 1α,25(OH)2D3 and the mechanism responsible for the inhibition in FaDu and SCC-25 squamous carcinoma cells. Our results demonstrate that MART-10 is more potent than 1α,25(OH)2D3 in suppressing FaDu and SCC-25 cell growth through greater cell cycle arrest at G0/G1, accompanied by a greater downregulation of ki-67 expression and upregulation of p21 and p27. We also showed that telomerase expression in SCC-25 was suppressed to a greater extent by MART-10 than by 1α,25(OH)2D3. Thus, given the previously-proven in vivo antitumor effect and safety of MART-10 and bleak background of HNSCC, based on our current result, we concluded that MART-10 has a potential as a chemo-preventive and - therapeutic agent to treat HNSCC.

Collaboration


Dive into the John N. Flanagan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shalender Bhasin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ravi Jasuja

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge