Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John N. Lorenz is active.

Publication


Featured researches published by John N. Lorenz.


Nature Genetics | 1998

Renal and intestinal absorptive defects in mice lacking the NHE3 Na + /H + exchanger

Patrick J. Schultheis; Lane L. Clarke; Pierre Meneton; Marian L. Miller; Manoocher Soleimani; Lara R. Gawenis; Tara M. Riddle; John J. Duffy; Thomas Doetschman; Tong Wang; Gerhard Giebisch; Peter S. Aronson; John N. Lorenz; Gary E. Shull

NHE3 is one of five plasma membrane Na+/H+ exchangers and is encoded by the mouse gene Slc9a3 . It is expressed on apical membranes of renal proximal tubule and intestinal epithelial cells and is thought to play a major role in NaCl and HCO3– absorption. As the distribution of NHE3 overlaps with that of the NHE2 isoform in kidney and intestine, the function and relative importance of NHE3 in vivo is unclear. To analyse its physiological functions, we generated mice lacking NHE3 function. Homozygous mutant (Slc9a3–/–) mice survive, but they have slight diarrhoea and blood analysis revealed that they are mildly acidotic. HCO3– and fluid absorption are sharply reduced in proximal convoluted tubules, blood pressure is reduced and there is a severe absorptive defect in the intestine. Thus, compensatory mechanisms must limit gross perturbations of electrolyte and acid-base balance. Plasma aldosterone is increased in NHE3-deficient mice, and expression of both renin and the AE1 (Slc4a1) Cl–/HCO3 – exchanger mRNAs are induced in kidney. In the colon, epithelial Na+ channel activity is increased and colonic H+,K +-ATPase mRNA is massively induced. These data show that NHE3 is the major absorptive Na+/H+ exchanger in kidney and intestine, and that lack of the exchanger impairs acid-base balance and Na+-fluid volume homeostasis.


Nature Medicine | 2004

PKC-α regulates cardiac contractility and propensity toward heart failure

Julian C. Braz; Kimberly N. Gregory; Anand Pathak; Wen Zhao; Bogachan Sahin; Raisa Klevitsky; Thomas F. Kimball; John N. Lorenz; Angus C. Nairn; Stephen B. Liggett; Ilona Bodi; Su Wang; Arnold Schwartz; Edward G. Lakatta; Jeffrey Robbins; Timothy E. Hewett; James A. Bibb; Margaret V. Westfall; Evangelia G. Kranias; Jeffery D. Molkentin

The protein kinase C (PKC) family of serine/threonine kinases functions downstream of nearly all membrane-associated signal transduction pathways. Here we identify PKC-α as a fundamental regulator of cardiac contractility and Ca2+ handling in myocytes. Hearts of Prkca-deficient mice are hypercontractile, whereas those of transgenic mice overexpressing Prkca are hypocontractile. Adenoviral gene transfer of dominant-negative or wild-type PKC-α into cardiac myocytes enhances or reduces contractility, respectively. Mechanistically, modulation of PKC-α activity affects dephosphorylation of the sarcoplasmic reticulum Ca2+ ATPase-2 (SERCA-2) pump inhibitory protein phospholamban (PLB), and alters sarcoplasmic reticulum Ca2+ loading and the Ca2+ transient. PKC-α directly phosphorylates protein phosphatase inhibitor-1 (I-1), altering the activity of protein phosphatase-1 (PP-1), which may account for the effects of PKC-α on PLB phosphorylation. Hypercontractility caused by Prkca deletion protects against heart failure induced by pressure overload, and against dilated cardiomyopathy induced by deleting the gene encoding muscle LIM protein (Csrp3). Deletion of Prkca also rescues cardiomyopathy associated with overexpression of PP-1. Thus, PKC-α functions as a nodal integrator of cardiac contractility by sensing intracellular Ca2+ and signal transduction events, which can profoundly affect propensity toward heart failure.


Nature Genetics | 2000

A role for Smad6 in development and homeostasis of the cardiovascular system

Katherine M. Galvin; Michael J. Donovan; Catherine A. Lynch; Ronald I. Meyer; Richard J. Paul; John N. Lorenz; Victoria Fairchild-Huntress; Kristen L. Dixon; Judy H. Dunmore; Michael A. Gimbrone; Dean Falb; Dennis Huszar

Smad proteins are intracellular mediators of signalling initiated by Tgf-βsuperfamily ligands (Tgf-βs, activins and bone morphogenetic proteins (Bmps)). Smads 1, 2, 3, 5 and 8 are activated upon phosphorylation by specific type I receptors, and associate with the common partner Smad4 to trigger transcriptional responses. The inhibitory Smads (6 and 7) are transcriptionally induced in cultured cells treated with Tgf-β superfamily ligands, and downregulate signalling in in vitro assays. Gene disruption in mice has begun to reveal specific developmental and physiological functions of the signal-transducing Smads. Here we explore the role of an inhibitory Smad in vivo by targeted mutation of Madh6 (which encodes the Smad6 protein). Targeted insertion of a LacZ reporter demonstrated that Smad6 expression is largely restricted to the heart and blood vessels, and that Madh6 mutants have multiple cardiovascular abnormalities. Hyperplasia of the cardiac valves and outflow tract septation defects indicate a function for Smad6 in the regulation of endocardial cushion transformation. The role of Smad6 in the homeostasis of the adult cardiovascular system is indicated by the development of aortic ossification and elevated blood pressure in viable mutants. These defects highlight the importance of Smad6 in the tissue-specific modulation of Tgf-β superfamily signalling pathways in vivo.


Circulation | 2000

Early and Delayed Consequences of β2-Adrenergic Receptor Overexpression in Mouse Hearts Critical Role for Expression Level

Stephen B. Liggett; Nicole M. Tepe; John N. Lorenz; Amy M. Canning; Tamara D. Jantz; Sayaka Mitarai; Atsuko Yatani; Gerald W. Dorn

BACKGROUND Transgenic cardiac beta(2)-adrenergic receptor (AR) overexpression has resulted in enhanced signaling and cardiac function in mice, whereas relatively low levels of transgenically expressed G(alphas) or beta(1)AR have resulted in phenotypes of ventricular failure. Potential relationships between the levels of betaAR overexpression and biochemical, molecular, and physiological consequences have not been reported. METHODS AND RESULTS We generated transgenic mice expressing beta(2)AR at 3690, 7120, 9670, and 23 300 fmol/mg in the heart, representing 60, 100, 150, and 350 times background betaAR expression. All lines showed enhanced basal adenylyl cyclase activation but a decrease in forskolin- and NaF-stimulated adenylyl cyclase activities. Mice of the highest-expressing line developed a rapidly progressive fibrotic dilated cardiomyopathy and died of heart failure at 25+/-1 weeks of age. The 60-fold line exhibited enhanced basal cardiac function without increased mortality when followed for 1 year, whereas 100-fold overexpressors developed a fibrotic cardiomyopathy and heart failure, with death occurring at 41+/-1 weeks of age. Adenylyl cyclase activation did not correlate with early or delayed decompensation. Propranolol administration reduced baseline +dP/dt(max) to nontransgenic levels in all beta(2)AR transgenics except the 350-fold overexpressors, indicating that spontaneous activation of beta(2)AR was present at this level of expression. CONCLUSIONS These data demonstrate that the heart tolerates enhanced contractile function via 60-fold beta(2)AR overexpression without detriment for a period of >/=1 year and that higher levels of expression result in either aggressive or delayed cardiomyopathy. The consequences for enhanced betaAR function in the heart appear to be highly dependent on which signaling elements are increased and to what extent.


Nature Medicine | 1998

Fibroblast growth factor 2 control of vascular tone

Ming Zhou; Roy L. Sutliff; Richard J. Paul; John N. Lorenz; James B. Hoying; Christian C. Haudenschild; Moying Yin; J. Douglas Coffin; Ling Kong; Evangelia G. Kranias; Wusheng Luo; Gregory P. Boivin; John J. Duffy; Sharon A. Pawlowski; Thomas Doetschman

Vascular tone control is essential in blood pressure regulation, shock, ischemia-reperfusion, inflammation, vessel injury/repair, wound healing, temperature regulation, digestion, exercise physiology, and metabolism. Here we show that a well-known growth factor, FCF2, long thought to be involved in many developmental and homeostatic processes, including growth of the tissue layers of vessel walls, functions in vascular tone control. Fgf2 knockout mice are morphologically normal and display decreased vascular smooth muscle contractility, low blood pressure and thrombocytosis. Following intra-arterial mechanical injury, FGF2-deficient vessels undergo a normal hyperplastic response. These results force us to reconsider the function of FGF2 in vascular development and homeostasis in terms of vascular tone control.


Journal of Biological Chemistry | 1998

Phenotype Resembling Gitelman’s Syndrome in Mice Lacking the Apical Na+-Cl− Cotransporter of the Distal Convoluted Tubule

Patrick J. Schultheis; John N. Lorenz; Pierre Meneton; Michelle L. Nieman; Tara M. Riddle; Michael Flagella; John J. Duffy; Thomas Doetschman; Marian L. Miller; Gary E. Shull

Mutations in the gene encoding the thiazide-sensitive Na+-Cl− cotransporter (NCC) of the distal convoluted tubule cause Gitelman’s syndrome, an inherited hypokalemic alkalosis with hypomagnesemia and hypocalciuria. These metabolic abnormalities are secondary to the deficit in NaCl reabsorption, but the underlying mechanisms are unclear. To gain a better understanding of the role of NCC in sodium and fluid volume homeostasis and in the pathogenesis of Gitelman’s syndrome, we used gene targeting to prepare an NCC-deficient mouse. Null mutant (Ncc −/−) mice appear healthy and are normal with respect to acid-base balance, plasma electrolyte concentrations, serum aldosterone levels, and blood pressure.Ncc −/− mice retain Na+ as well as wild-type mice when fed a Na+-depleted diet; however, after 2 weeks of Na+ depletion the mean arterial blood pressure of Ncc −/− mice was significantly lower than that of wild-type mice. In addition, Ncc −/−mice exhibited increased renin mRNA levels in kidney, hypomagnesemia and hypocalciuria, and morphological changes in the distal convoluted tubule. These data indicate that the loss of NCC activity in the mouse causes only subtle perturbations of sodium and fluid volume homeostasis, but renal handling of Mg2+ and Ca2+ are altered, as observed in Gitelman’s syndrome.


Journal of Biological Chemistry | 1999

Mice Lacking the Basolateral Na-K-2Cl Cotransporter Have Impaired Epithelial Chloride Secretion and Are Profoundly Deaf

Michael Flagella; Lane L. Clarke; Marian L. Miller; Lawrence C. Erway; Ralph A. Giannella; Anastasia Andringa; Lara R. Gawenis; Jennifer Kramer; John J. Duffy; Thomas Doetschman; John N. Lorenz; Ebenezer N. Yamoah; Emma Lou Cardell; Gary E. Shull

In chloride-secretory epithelia, the basolateral Na-K-2Cl cotransporter (NKCC1) is thought to play a major role in transepithelial Cl− and fluid transport. Similarly, in marginal cells of the inner ear, NKCC1 has been proposed as a component of the entry pathway for K+ that is secreted into the endolymph, thus playing a critical role in hearing. To test these hypotheses, we generated and analyzed an NKCC1-deficient mouse. Homozygous mutant (Nkcc1−/− ) mice exhibited growth retardation, a 28% incidence of death around the time of weaning, and mild difficulties in maintaining their balance. Mean arterial blood pressure was significantly reduced in both heterozygous and homozygous mutants, indicating an important function for NKCC1 in the maintenance of blood pressure. cAMP-induced short circuit currents, which are dependent on the CFTR Cl− channel, were reduced in jejunum, cecum, and trachea of Nkcc1−/− mice, indicating that NKCC1 contributes to cAMP-induced Cl− secretion. In contrast, secretion of gastric acid in adult Nkcc1−/− stomachs and enterotoxin-stimulated fluid secretion in the intestine of sucklingNkcc1−/− mice were normal. Finally, homozygous mutants were deaf, and histological analysis of the inner ear revealed a collapse of the membranous labyrinth, consistent with a critical role for NKCC1 in transepithelial K+ movements involved in generation of the K+-rich endolymph and the endocochlear potential.


Circulation Research | 2006

GDF15/MIC-1 Functions As a Protective and Antihypertrophic Factor Released From the Myocardium in Association With SMAD Protein Activation

Jian Xu; Thomas R. Kimball; John N. Lorenz; David A. Brown; Asne R. Bauskin; Raisa Klevitsky; Timothy E. Hewett; Samuel N. Breit; Jeffery D. Molkentin

Here we identified growth-differentiation factor 15 (GDF15) (also known as MIC-1), a secreted member of the transforming growth factor (TGF)-&bgr; superfamily, as a novel antihypertrophic regulatory factor in the heart. GDF15 is not expressed in the normal adult heart but is induced in response to conditions that promote hypertrophy and dilated cardiomyopathy. To elucidate the function of GDF15 in the heart, we generated transgenic mice with cardiac-specific overexpression. GDF15 transgenic mice were normal but were partially resistant to pressure overload-induced hypertrophy. Expression of GDF15 in neonatal cardiomyocyte cultures by adenoviral-mediated gene transfer antagonized agonist-induced hypertrophy in vitro. Transient expression of GDF15 outside the heart by intravenous adenoviral delivery, or by direct injection of recombinant GDF15 protein, attenuated ventricular dilation and heart failure in muscle lim protein gene–targeted mice through an endocrine effect. Conversely, examination of Gdf15 gene-targeted mice showed enhanced cardiac hypertrophic growth following pressure overload stimulation. Gdf15 gene-targeted mice also demonstrated a pronounced loss in ventricular performance following only 2 weeks of pressure overload stimulation, whereas wild-type controls maintained function. Mechanistically, GDF15 stimulation promoted activation of SMAD2/3 in cultured neonatal cardiomyocytes. Overexpression of SMAD2 attenuated cardiomyocyte hypertrophy similar to GDF15 treatment, whereas overexpression of the inhibitory SMAD proteins, SMAD6/7, reversed the antihypertrophic effects of GDF15. These results identify GDF15 as a novel autocrine/endocrine factor that antagonizes the hypertrophic response and loss of ventricular performance, possibly through a mechanism involving SMAD proteins.


Nature Medicine | 2002

Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy

Martin G. Yussman; Tsuyoshi Toyokawa; Amy Odley; Roy A. Lynch; Guangyu Wu; Melissa C. Colbert; Bruce J. Aronow; John N. Lorenz; Gerald W. Dorn

Loss of cardiomyocytes through programmed cell death is a key event in the development of heart failure, but the inciting molecular mechanisms are largely unknown. We used microarray analysis to identify a genetic program for myocardial apoptosis in Gq-mediated and pressure-overload cardiac hypertrophy. A critical component of this apoptotic program was Nix/Bnip3L. Nix localized to mitochondria and caused release of cytochrome c, activation of caspase-3 and apoptotic cell death, when expressed in HEK293 fibroblasts. A previously undescribed truncated Nix isoform, termed sNix, was not targeted to mitochondria but heterodimerized with Nix and protected against Nix-mediated apoptosis. Forced in vivo myocardial expression of Nix resulted in apoptotic cardiomyopathy and rapid death. Conversely, sNix protected against apoptotic peripartum cardiomyopathy in Gαq-overexpressors. Thus, Nix/Bnip3L is upregulated in myocardial hypertrophy, and is both necessary and sufficient for Gq-mediated apoptosis of cardiomyocytes and resulting hypertrophy decompensation.


Nature | 1998

Mice without myoglobin

Daniel J. Garry; G. A. Ordway; John N. Lorenz; Nina B. Radford; Eva R. Chin; Robert W. Grange; Rhonda Bassel-Duby; R. Sanders Williams

Myoglobin, an intracellular haemoprotein expressed in the heart and oxidative skeletal myofibres of vertebrates, binds molecular oxygen and may facilitate oxygen transport from erythrocytes to mitochondria, thereby maintaining cellular respiration during periods of high physiological demand. Here we show, however, that mice without myoglobin, generated by gene-knockout technology, are fertile and exhibit normal exercise capacity and a normal ventilatory response to low oxygen levels (hypoxia). Heart and soleus muscles from these animals are depigmented, but function normally in standard assays of muscle performance invitro across a range of work conditions and oxygen availability. These data show that myoglobin is not required to meet the metabolic requirements of pregnancy or exercise in a terrestrial mammal, and raise new questions about oxygen transport and metabolic regulation in working muscles.

Collaboration


Dive into the John N. Lorenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary E. Shull

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Robbins

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffery D. Molkentin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Hanna Osinska

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Paul

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Evangelia G. Kranias

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Vikram Prasad

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge