Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Fahrenbach is active.

Publication


Featured researches published by John P. Fahrenbach.


Circulation Research | 2007

Human Heart Failure Is Associated With Abnormal C-Terminal Splicing Variants in the Cardiac Sodium Channel

Lijuan L. Shang; Arnold E. Pfahnl; Shamarendra Sanyal; Zhe Jiao; Jon Allen; Kathrin Banach; John P. Fahrenbach; Daiana Weiss; W. Robert Taylor; A. Maziar Zafari; Samuel C. Dudley

Heart failure (HF) is associated with reduced cardiac Na+ channel (SCN5A) current. We hypothesized that abnormal transcriptional regulation of this ion channel during HF could help explain the reduced current. Using human hearts explanted at the transplantation, we have identified 3 human C-terminal SCN5A mRNA splicing variants predicted to result in truncated, nonfunctional channels. As compared with normal hearts, the explanted ventricles showed an upregulation of 2 of the variants and a downregulation of the full-length mRNA transcript such that the E28A transcript represented only 48.5% (P<0.01) of the total SCN5A mRNA. This correlated with a 62.8% (P<0.01) reduction in Na+ channel protein. Lymphoblasts and skeletal muscle expressing SCN5A also showed identical C-terminal splicing variants. Variants showed reduced membrane protein and no functional current. Transfection of truncation variants into a cell line stably transfected with the full-length Na+ channel resulted in dose-dependent reductions in channel mRNA and current. Introduction of a premature truncation in the C-terminal region in a single allele of the mouse SCN5A resulted in embryonic lethality. Embryonic stem cell-derived cardiomyocytes expressing the construct showed reductions in Na+ channel-dependent electrophysiological parameters, suggesting that the presence of truncated Na+ channel mRNA at levels seen in HF is likely to be physiologically significant. In summary, chronic HF was associated with an increase in 2 truncated SCN5A variants and a decrease in the native mRNA. These splice variations may help explain a loss of Na+ channel protein and may contribute to the increased arrhythmic risk in clinical HF.


Circulation-cardiovascular Genetics | 2012

Population-Based Variation in Cardiomyopathy Genes

Jessica R. Golbus; Megan J. Puckelwartz; John P. Fahrenbach; Lisa Dellefave-Castillo; Don Wolfgeher; Elizabeth M. McNally

Background—Hypertrophic cardiomyopathy and dilated cardiomyopathy arise from mutations in genes encoding sarcomere proteins including MYH7, MYBPC3, and TTN. Genetic diagnosis of cardiomyopathy relies on complete sequencing of the gene coding regions, and most pathogenic variation is rare. The 1000 Genomes Project is an ongoing consortium designed to deliver whole genome sequence information from an ethnically diverse population and, therefore, is a rich source to determine both common and rare genetic variants. Methods and Results—We queried the 1000 Genomes Project database of 1092 individuals for exonic variants within 3 sarcomere genes MHY7, MYBPC3, and TTN. We focused our analysis on protein-altering variation, including nonsynonymous single nucleotide polymorphisms, insertion/deletion polymorphisms, or splice site altering variants. We identified known and predicted pathogenic variation in MYBPC3 and MYH7 at a higher frequency than what would be expected based on the known prevalence of cardiomyopathy. We also found substantial variation, including protein-disrupting sequences, in TTN. Conclusions—Cardiomyopathy is a genetically heterogeneous disorder caused by mutations in multiple genes. The frequency of predicted pathogenic protein-altering variation in cardiomyopathy genes suggests that many of these variants may be insufficient to cause disease on their own but may modify phenotype in a genetically susceptible host. This is suggested by the high prevalence of TTN insertion/deletions in the 1000 Genomes Project cohort. Given the possibility of additional genetic variants that modify the phenotype of a primary driver mutation, broad-based genetic testing should be employed.


PLOS ONE | 2010

Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation.

Stephanie K. Mewborn; Megan J. Puckelwartz; Fida Abuisneineh; John P. Fahrenbach; Yuan Zhang; Heather MacLeod; Lisa Dellefave; Peter Pytel; Sara Selig; Christine M. Labno; Harinder Singh; Elizabeth M. McNally

Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the laminas ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.


Journal of Clinical Investigation | 2012

TBX5 drives Scn5a expression to regulate cardiac conduction system function

David E. Arnolds; Fang Liu; John P. Fahrenbach; Gene H. Kim; Kurt J. Schillinger; Scott Smemo; Elizabeth M. McNally; Marcelo A. Nobrega; Vickas V. Patel; Ivan P. Moskowitz

Cardiac conduction system (CCS) disease, which results in disrupted conduction and impaired cardiac rhythm, is common with significant morbidity and mortality. Current treatment options are limited, and rational efforts to develop cell-based and regenerative therapies require knowledge of the molecular networks that establish and maintain CCS function. Recent genome-wide association studies (GWAS) have identified numerous loci associated with adult human CCS function, including TBX5 and SCN5A. We hypothesized that TBX5, a critical developmental transcription factor, regulates transcriptional networks required for mature CCS function. We found that deletion of Tbx5 from the mature murine ventricular conduction system (VCS), including the AV bundle and bundle branches, resulted in severe VCS functional consequences, including loss of fast conduction, arrhythmias, and sudden death. Ventricular contractile function and the VCS fate map remained unchanged in VCS-specific Tbx5 knockouts. However, key mediators of fast conduction, including Nav1.5, which is encoded by Scn5a, and connexin 40 (Cx40), demonstrated Tbx5-dependent expression in the VCS. We identified a TBX5-responsive enhancer downstream of Scn5a sufficient to drive VCS expression in vivo, dependent on canonical T-box binding sites. Our results establish a direct molecular link between Tbx5 and Scn5a and elucidate a hierarchy between human GWAS loci that affects function of the mature VCS, establishing a paradigm for understanding the molecular pathology of CCS disease.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair

Kayleigh A. Swaggart; Alexis R. Demonbreun; Andy H. Vo; Kaitlin E. Swanson; Ellis Y. Kim; John P. Fahrenbach; Jenan Holley-Cuthrell; Ascia Eskin; Zugen Chen; Kevin Squire; Ahlke Heydemann; Abraham A. Palmer; Stanley F. Nelson; Elizabeth M. McNally

Significance Many forms of muscular dystrophy produce muscle weakness through injury to skeletal muscle myofibers and specifically disruption of the muscle plasma membrane. Using a mouse model of muscular dystrophy in a genetically diverse background, a genome-wide scan for genetic modifiers was undertaken. A modifier locus that altered plasma membrane leak was interrogated, and a splice site variant in Anxa6, encoding annexin A6, was identified. The Anxa6 splice site produces a truncated annexin A6 protein. The truncated annexin A6 protein was found to inhibit membrane repair by disrupting the formation of the normal annexin A6-rich cap and repair zone. These data demonstrate annexin A6s role in muscle membrane leak and repair in muscular dystrophy. Many monogenic disorders, including the muscular dystrophies, display phenotypic variability despite the same disease-causing mutation. To identify genetic modifiers of muscular dystrophy and its associated cardiomyopathy, we used quantitative trait locus mapping and whole genome sequencing in a mouse model. This approach uncovered a modifier locus on chromosome 11 associated with sarcolemmal membrane damage and heart mass. Whole genome and RNA sequencing identified Anxa6, encoding annexin A6, as a modifier gene. A synonymous variant in exon 11 creates a cryptic splice donor, resulting in a truncated annexin A6 protein called ANXA6N32. Live cell imaging showed that annexin A6 orchestrates a repair zone and cap at the site of membrane disruption. In contrast, ANXA6N32 dramatically disrupted the annexin A6-rich cap and the associated repair zone, permitting membrane leak. Anxa6 is a modifier of muscular dystrophy and membrane repair after injury.


Human Molecular Genetics | 2011

Impaired muscle growth and response to insulin-like growth factor 1 in dysferlin-mediated muscular dystrophy

Alexis R. Demonbreun; John P. Fahrenbach; Kieran Deveaux; Judy U. Earley; Peter Pytel; Elizabeth M. McNally

Loss-of-function mutations in dysferlin cause muscular dystrophy, and dysferlin has been implicated in resealing membrane disruption in myofibers. Given the importance of membrane fusion in many aspects of muscle function, we studied the role of dysferlin in muscle growth. We found that dysferlin null myoblasts have a defect in myoblast-myotube fusion, resulting in smaller myotubes in culture. In vivo, dysferlin null muscle was found to have mislocalized nuclei and vacuolation. We found that myoblasts isolated from dysferlin null mice accumulate enlarged, lysosomal-associated membrane protein 2 (LAMP2)-positive lysosomes. Dysferlin null myoblasts accumulate transferrin-488, reflecting abnormal vesicular trafficking. Additionally, dysferlin null myoblasts display abnormal trafficking of the insulin-like growth factor (IGF) receptor, where the receptor is shuttled to LAMP2-positive lysosomes. We studied growth, in vivo, by infusing mice with the growth stimulant IGF1. Control IGF1-treated mice increased myofiber diameter by 30% as expected, whereas dysferlin null muscles had no response to IGF1, indicating a defect in myofiber growth. We also noted that dysferlin null fibroblasts also accumulate acidic vesicles, IGF receptor and transferrin, indicating that dysferlin is important for nonmuscle vesicular trafficking. These data implicate dysferlin in multiple membrane fusion events within the cell and suggest multiple pathways by which loss of dysferlin contributes to muscle disease.


The Journal of Physiology | 2007

The relevance of non‐excitable cells for cardiac pacemaker function

John P. Fahrenbach; Rafael Mejia-Alvarez; Kathrin Banach

Age‐dependent changes in the architecture of the sinus node comprise an increasing ratio between fibroblasts and cardiomyocytes. This change is discussed as a potential mechanism for sinus node disease. The goal of this study was to determine the mechanism through which non‐excitable cells influence the spontaneous activity of multicellular cardiomyocyte preparations. Cardiomyocyte monolayers (HL‐1 cells) or embryonic stem cell‐derived cardiomyocytes were used as two‐ and three‐dimensional cardiac pacemaker models. Spontaneous activity and conduction velocity (θ) were monitored by field potential measurements with microelectrode arrays (MEAs). The influence of fibroblasts (WT‐fibs) was determined in heterocellular cultures of different cardiomyocyte and fibroblast ratios. The relevance of heterocellular gap junctional coupling was evaluated by the use of fibroblasts deficient for the expression of Cx43 (Cx43−/−‐fibs). The beating frequency and θ of heterocellular cultures depended negatively on the fibroblast concentration. Interspersion of fibroblasts in cardiomyocyte monolayers increased the coefficient of the interbeat interval variability. Whereas Cx43−/−‐fibs decreased θ significantly less than WT‐fibs, their effect on the beating frequency and the beat‐to‐beat variability seemed largely independent of their ability to establish intercellular coupling. These results suggest that electrically integrated, non‐excitable cells modulate the excitability of cardiac pacemaker preparations by two distinct mechanisms, one dependent and the other independent of the heterocellular coupling established. Whereas heterocellular coupling enables the fibroblast to depolarize the cardiomyocytes or to act as a current sink, the mere physical separation of the cardiomyocytes by fibroblasts induces bradycardia through a reduction in frequency entrainment.


Circulation-cardiovascular Genetics | 2014

Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

Jessica R. Golbus; Megan J. Puckelwartz; Lisa Dellefave-Castillo; John P. Fahrenbach; Viswateja Nelakuditi; Lorenzo L. Pesce; Peter Pytel; Elizabeth M. McNally

Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of >50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated


PLOS ONE | 2016

Documenting Penicillin Allergy: The Impact of Inconsistency.

Nirav Shah; Jessica P. Ridgway; Natasha Pettit; John P. Fahrenbach; Ari Robicsek

1000 genome, it is expected that genetic testing will shift toward comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused on 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1 to 14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and segregation analysis, where available. Three of 3 previously identified primary mutations were detected by this analysis. In 6 subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and had additional pathological correlation to provide evidence for causality. For 2 subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. Conclusions—These pilot data demonstrate that ≈30 to 40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.


Journal of Molecular and Cellular Cardiology | 2008

Decreased intercellular coupling improves the function of cardiac pacemakers derived from mouse embryonic stem cells

John P. Fahrenbach; Xun Ai; Kathrin Banach

Background Allergy documentation is frequently inconsistent and incomplete. The impact of this variability on subsequent treatment is not well described. Objective To determine how allergy documentation affects subsequent antibiotic choice. Design Retrospective, cohort study. Participants 232,616 adult patients seen by 199 primary care providers (PCPs) between January 1, 2009 and January 1, 2014 at an academic medical system. Main Measures Inter-physician variation in beta-lactam allergy documentation; antibiotic treatment following beta-lactam allergy documentation. Key Results 15.6% of patients had a reported beta-lactam allergy. Of those patients, 39.8% had a specific allergen identified and 22.7% had allergic reaction characteristics documented. Variation between PCPs was greater than would be expected by chance (all p<0.001) in the percentage of their patients with a documented beta-lactam allergy (7.9% to 24.8%), identification of a specific allergen (e.g. amoxicillin as opposed to “penicillins”) (24.0% to 58.2%) and documentation of the reaction characteristics (5.4% to 51.9%). After beta-lactam allergy documentation, patients were less likely to receive penicillins (Relative Risk [RR] 0.16 [95% Confidence Interval: 0.15–0.17]) and cephalosporins (RR 0.28 [95% CI 0.27–0.30]) and more likely to receive fluoroquinolones (RR 1.5 [95% CI 1.5–1.6]), clindamycin (RR 3.8 [95% CI 3.6–4.0]) and vancomycin (RR 5.0 [95% CI 4.3–5.8]). Among patients with beta-lactam allergy, rechallenge was more likely when a specific allergen was identified (RR 1.6 [95% CI 1.5–1.8]) and when reaction characteristics were documented (RR 2.0 [95% CI 1.8–2.2]). Conclusions Provider documentation of beta-lactam allergy is highly variable, and details of the allergy are infrequently documented. Classification of a patient as beta-lactam allergic and incomplete documentation regarding the details of the allergy lead to beta-lactam avoidance and use of other antimicrobial agents, behaviors that may adversely impact care quality and cost.

Collaboration


Dive into the John P. Fahrenbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathrin Banach

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan C. Makielski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge