Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Frampton is active.

Publication


Featured researches published by John P. Frampton.


Lab on a Chip | 2011

Rounded multi-level microchannels with orifices made in one exposure enable aqueous two-phase system droplet microfluidics†

David Lai; John P. Frampton; Hari Sriram; Shuichi Takayama

Exposure of a negative photoresist-coated glass slide with diffused light from the backside through a mask with disconnected features provides multi-level rounded channels with narrow orifices in one exposure. Using these structures, we construct microfluidic systems capable of creating aqueous two-phase system droplets where one aqueous phase forms droplets and the other aqueous phase forms the surrounding matrix. Unlike water-in-oil droplet systems, aqueous two-phase systems can have very low interfacial tensions that prevent spontaneous droplet formation. The multi-level channels fabricated by backside lithography satisfy two conflicting needs: (i) the requirement to have narrowed channels for efficient valve closure by channel deformation and (ii) the need to have wide channels to reduce the flow velocity, thus reducing the capillary number and enhancing droplet formation.


Biomedical Microdevices | 2011

Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems

John P. Frampton; David Lai; Hari Sriram; Shuichi Takayama

Laminar and pulsatile flow of aqueous solutions in microfluidic channels can be useful for controlled delivery of cells and molecules. Dispersion effects resulting from diffusion and convective disturbances, however, result in reagent delivery profiles becoming blurred over the length of the channels. This issue is addressed partially by using oil-in-water phase systems. However, there are limitations in terms of the biocompatibility of these systems for adherent cell culture. Here we present a fully biocompatible aqueous two-phase flow system that can be used to pattern cells within simple microfluidic channel designs, as well as to deliver biochemical treatments to cells according to discrete boundaries. We demonstrate that aqueous two-phase systems are capable of precisely delivering cells as laminar patterns, or as islands by way of forced droplet formation. We also demonstrate that these systems can be used to precisely control chemical delivery to preformed monolayers of cells growing within channels. Treatments containing trypsin were localized more reliably using aqueous two-phase delivery than using conventional delivery in aqueous medium.


Scientific Reports | 2015

Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

John P. Frampton; Joshua B. White; Arlyne Simon; Michael Tsuei; Sophie Paczesny; Shuichi Takayama

Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.


Biotechnology Journal | 2013

Microfluidic systems: A new toolbox for pluripotent stem cells

Sasha Cai Lesher-Perez; John P. Frampton; Shuichi Takayama

Conventional culture systems are often limited in their ability to regulate the growth and differentiation of pluripotent stem cells. Microfluidic systems can overcome some of these limitations by providing defined growth conditions with user‐controlled spatiotemporal cues. Microfluidic systems allow researchers to modulate pluripotent stem cell renewal and differentiation through biochemical and mechanical stimulation, as well as through microscale patterning and organization of cells and extracellular materials. Essentially, microfluidic tools are reducing the gap between in vitro cell culture environments and the complex and dynamic features of the in vivo stem cell niche. These microfluidic culture systems can also be integrated with microanalytical tools to assess the health and molecular status of pluripotent stem cells. The ability to control biochemical and mechanical input to cells, as well as rapidly and efficiently analyze the biological output from cells, will further our understanding of stem cells and help translate them into clinical use. This review provides a comprehensive insignt into the implications of microfluidics on pluripotent stem cell research.


Technology | 2014

Aqueous two-phase systems enable multiplexing of homogeneous immunoassays

Arlyne Simon; John P. Frampton; Nien Tsu Huang; Katsuo Kurabayashi; Sophie Paczesny; Shuichi Takayama

Quantitative measurement of protein biomarkers is critical for biomarker validation and early disease detection. Current multiplex immunoassays are time consuming costly and can suffer from low accuracy. For example, multiplex ELISAs require multiple, tedious, washing and blocking steps. Moreover, they suffer from nonspecific antibody cross-reactions, leading to high background and false-positive signals. Here, we show that co-localizing antibody-bead pairs in an aqueous two-phase system (ATPS) enables multiplexing of sensitive, no-wash, homogeneous assays, while preventing nonspecific antibody cross-reactions. Our cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers ((C-X-C motif) ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6) in cell supernatants using a single assay well. The potential clinical utility of the assay is demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD).


Journal of Biophotonics | 2013

Localized micro-scale disruption of cells using laser-generated focused ultrasound

Hyoung Won Baac; John P. Frampton; Jong G. Ok; Shuichi Takayama; L. Jay Guo

We utilize laser-generated focused ultrasound (LGFU) to create targeted mechanical disturbance on a few cells. The LGFU is transmitted through an optoacoustic lens that converts laser pulses into focused ultrasound. The tight focusing (<100 µm) and high peak pressure of the LGFU produces cavitational disturbances at a localized spot with micro-jetting and secondary shock-waves arising from micro-bubble collapse. We demonstrate that LGFU can be used as a non-contact, non-ionizing, high-precision tool to selectively detach a single cell from its culture substrate. Furthermore, we explore the possibility of biomolecule delivery in a small population of cells targeted by LGFU at pressure amplitudes below and above the cavitation threshold. We experimentally confirm that cavitational disruption is required for delivery of propidium iodide, a membrane-impermeable nucleic acid-binding dye, into cells.


Analytical Chemistry | 2014

Label-Free Direct Visual Analysis of Hydrolytic Enzyme Activity Using Aqueous Two-Phase System Droplet Phase Transitions

David Lai; John P. Frampton; Michael Tsuei; Albert Kao; Shuichi Takayama

Dextran hydrolysis-mediated conversion of polyethylene glycol (PEG)-dextran (DEX) aqueous two-phase system droplets to a single phase was used to directly visualize Dextranase activity. DEX droplets were formed either by manual micropipetting or within a continuous PEG phase by computer controlled actuation of an orifice connecting rounded channels formed by backside diffused light lithography. The time required for the two-phase to one-phase transition was dependent on the Dextranase concentration, pH of the medium, and temperature. The apparent Michaelis constants for Dextranase were estimated based on previously reported catalytic constants, the binodal polymer concentration curves for PEG-DEX phase transition for each temperature, and pH condition. The combination of a microfluidic droplet system and phase transition observation provides a new method for label-free direct measurement of enzyme activity.


Journal of Visualized Experiments | 2013

Cell Co-culture Patterning Using Aqueous Two-phase Systems

John P. Frampton; Joshua B. White; Abin T. Abraham; Shuichi Takayama

Cell patterning technologies that are fast, easy to use and affordable will be required for the future development of high throughput cell assays, platforms for studying cell-cell interactions and tissue engineered systems. This detailed protocol describes a method for generating co-cultures of cells using biocompatible solutions of dextran (DEX) and polyethylene glycol (PEG) that phase-separate when combined above threshold concentrations. Cells can be patterned in a variety of configurations using this method. Cell exclusion patterning can be performed by printing droplets of DEX on a substrate and covering them with a solution of PEG containing cells. The interfacial tension formed between the two polymer solutions causes cells to fall around the outside of the DEX droplet and form a circular clearing that can be used for migration assays. Cell islands can be patterned by dispensing a cell-rich DEX phase into a PEG solution or by covering the DEX droplet with a solution of PEG. Co-cultures can be formed directly by combining cell exclusion with DEX island patterning. These methods are compatible with a variety of liquid handling approaches, including manual micropipetting, and can be used with virtually any adherent cell type.


Advanced Healthcare Materials | 2013

Delivery of Proteases in Aqueous Two‐Phase Systems Enables Direct Purification of Stem Cell Colonies from Feeder Cell Co‐Cultures for Differentiation into Functional Cardiomyocytes

John P. Frampton; Huilin Shi; Albert Kao; Jack M. Parent; Shuichi Takayama

Patterning of bioactive enzymes with subcellular resolution is achieved by dispensing droplets of dextran (DEX) onto polyethylene glycol (PEG)-covered cells though a glass capillary needle connected to a pneumatic pump. This technique is applied to purify colonies of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblast (MEF) feeder cultures and inefficiently induced iPSC colonies by selectively dissociating the iPSCs with proteases.


Cell Transplantation | 2013

Induction of functional mesenchymal stem cells from rabbit embryonic stem cells by exposure to severe hypoxic conditions.

Takeshi Teramura; Yuta Onodera; Toshiyuki Takehara; John P. Frampton; Toshiki Matsuoka; Syunsuke Ito; Koichi Nakagawa; Yoshihisa Miki; Yoshihiko Hosoi; Chiaki Hamanishi; Kanji Fukuda

Embryonic stem cells (ESCs) have the potential to be used as an unlimited cell source for cell transplantation therapy, as well as for studying mechanisms of disease and early mammalian development. However, applications involving ESCs have been limited by the lack of reliable differentiation methods in many cases. Mesenchymal stem cells (MSCs) have also emerged as a promising cell source, but as suggested in recent studies, these cells display limited potential for proliferation and differentiation, thereby limiting their usefulness in the clinic and in the laboratory. Unfortunately, effective methods for induction of MSCs from pluripotent stem cells have not been established, and the development of such methods remains a major challenge facing stem cell biologists. Oxygen concentration is one of the most important factors regulating tissue development. It has profound effects on cell metabolism and physiology and can strongly influence stem cell fate. Here we demonstrate that severe low O2 concentrations (1%) can function as a selective pressure for removing undifferentiated pluripotent cells during the induction of MSCs from rabbit ESCs (rESCs) and that MSCs induced under severe hypoxic conditions function as normal MSCs; that is, they repopulate after cloning, express specific markers (vimentin, CD29, CD90, CD105, and CD140a) and differentiate into adipocytes, osteoblasts, and chondrocytes. Furthermore, we demonstrate that these cells can contribute to cartilage regeneration in an in vivo rabbit model for joint cartilage injury. These results support the notion that exposing ESCs to severe hypoxic conditions during differentiation can be used as a strategy for the preparation of functional MSCs from ESCs.

Collaboration


Dive into the John P. Frampton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Lai

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge