John P. Groten
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John P. Groten.
Critical Reviews in Toxicology | 1998
Flemming R. Cassee; John P. Groten; P.J. van Bladeren; V.J. Feron
A major objective of combination toxicology is to establish whether a mixture of chemicals will result in an effect similar to that expected on the basis of additivity. This requires understanding of the basic concepts of the combined toxicological action of the compounds of the mixture: simple similar action (dose addition), simple dissimilar action (effect or response addition), and interaction (synergism, potentiation, antagonism). The number of possible combinations of chemicals is innumerable, and in vivo testing of these mixtures is unattainable from an ethical, economical, or pragmatic perspective. Prediction of the effect of a mixture based on the knowledge of each of the constituents requires detailed information on the composition of the mixture, exposure level, mechanism of action, and receptor of the individual compounds. Often, such information is not or is only partially available and additional studies are needed. Research strategies and methods to assess joint action or interaction of chemicals in mixtures such as whole mixture testing, physiologically based toxicokinetic modeling and isobologram and dose response surface analyses are discussed. Guidance is given for risk assessment of both simple and complex mixtures. We hypothesize that, as a rule, exposure to mixtures of chemicals at (low) non-toxic doses of the individual constituents is of no health concern. To verify the hypothesis is a challenge; to timely detect exceptions to the rule is the real challenge of major practical importance.
Expert Review of Proteomics | 2005
W.H.M. Heijne; Anne S. Kienhuis; B. van Ommen; R.H. Stierum; John P. Groten
Toxicogenomics can facilitate the identification and characterization of toxicity, as illustrated in this review. Toxicogenomics, the application of the functional genomics technologies (transcriptomics, proteomics and metabolomics) in toxicology enables the study of adverse effects of xenobiotic substances in relation to structure and activity of the genome. The advantages and limitations of the different technologies are evaluated, and the prospects for integration of the technologies into a systems biology or systems toxicology approach are discussed. Applications of toxicogenomics in various laboratories around the world show that the crucial steps and sequence of events at the molecular level can be studied to provide detailed insights into mechanisms of toxic action. Toxicogenomics allowed for more sensitive and earlier detection of adverse effects in (animal) toxicity studies. Furthermore, the effects of exposure to mixtures could be studied in more detail. This review argues that in the (near) future, human health risk assessment will truly benefit from toxicogenomics (systems toxicology).
Trends in Pharmacological Sciences | 2001
John P. Groten; Victor J. Feron; Jürgen Sühnel
Humans are exposed to mixtures of chemicals, rather than to individual chemicals. From a public health point of view, it is most relevant to answer the question of whether or not the components in a mixture interact in a way that results in an increase in their overall effect compared with the sum of the effects of the individual components. In this article, options for the hazard identification and risk assessment of simple and complex chemical mixtures will be discussed. In addition, key research needed to continue the development of hazard characterization of chemical mixtures will be described. Clearly, more collaboration among toxicologists, model developers and pharmacologists will be necessary.
Food and Chemical Toxicology | 1991
John P. Groten; E.J. Sinkeldam; T. Muys; J.B. Luten; P.J. van Bladeren
The toxicity of Cd was examined in rats fed diets containing 30 mg Cd/kg as CdCl2 for 8 wk. The Cd-containing diets were supplemented with various combinations of the minerals Ca, P, Mg, Mn, Cu, Fe, Zn and Se in order to investigate the protective effect of these mineral combinations on Cd accumulation and toxicity. The mineral combinations were chosen such that the effect of the individual components could be analysed. At the end of the 8-wk feeding period, the Cd concentrations in the liver and renal cortex were 13.9 and 19.5 mg/kg body weight, respectively. The feeding of 30 mg Cd/kg diet alone resulted in well known Cd effects, such as growth retardation, slight anaemia, increased plasma transaminase activities and alteration of Fe accumulation. Only supplements that contained extra Fe resulted in a significant protection against Cd accumulation and toxicity. The most pronounced effect was obtained using a supplement of Ca/P, Fe and Zn, which resulted in a 70-80% reduction in Cd accumulation in the liver and kidneys, as well as a reduction in Cd toxicity. The protective effect of the mineral combinations was mainly due to the presence of Fe2+, but in combinations with Ca/P and Zn the effect of Fe was most pronounced. Compared with Fe2+ the protective effect of Fe3+ was significantly lower. Addition of ascorbic acid to Fe in both forms improved the Fe uptake, but consequently did not decrease Cd accumulation. Thus, the mineral status of the diet may have a considerable impact on the accumulation and toxicity of Cd, fed as CdCl2 in laboratory animals. For the risk assessment of Cd intake, special consideration should be given to an adequate intake of Fe.
Toxicological Sciences | 1996
Flemming R. Cassee; John P. Groten; V.J. Feron
Formaldehyde, acetaldehyde, and acrolein are well-known upper respiratory tract irritants and occur simultaneously as pollutants in many indoor and outdoor environments. The upper respiratory tract, and especially the nose, is the prime target for inhaled aldehydes. To study possible additive or interactive effects on the nasal epithelium we carried out 1- and 3-day inhalation studies (6 hr/day) with formaldehyde (1.0, 3.2, and 6.4 ppm), acetaldehyde (750 and 1500 ppm), acrolein (0.25, 0.67, and 1.40 ppm), or mixtures of these aldehydes, using male Wistar rats and exposure concentrations varying from clearly nontoxic to toxic. The (mixtures of) aldehydes were studied for histopathological and biochemical changes in the respiratory and olfactory epithelium of the nose. In addition, cell proliferation was determined by incorporation of bromodeoxyuridine and proliferating cell nuclear antigen expression. Effects were primarily observed after 3 days of exposure. Histopathological changes and cell proliferation of the nasal epithelium induced by mixtures of the three aldehydes appeared to be more severe and more extensive in both the respiratory and the olfactory part of the nose than those observed after exposure to the individual aldehydes at comparable exposure levels. As far as nasal histopathological changes and cell proliferation are concerned neither dose addition nor potentiating interactions occurred at no-toxic-effect levels, except for a possible potentiating effect of acetaldehyde at noneffect levels. The results did not indicate a major role for aldehyde dehydrogenases in the biotransformation of the aldehydes studied. Activities of glutathione S-transferase and glutathione reductase after 3 days of exposure to acrolein, alone or in combination with formaldehyde and acetaldehyde, were depressed whereas the glutathione peroxidase activity was elevated. No decrease of nonprotein sulphydryl levels were observed. These findings suggest that, for no-toxic-effect levels, combined exposure to these aldehydes with the same target organ (nose) and exerting the same type of adverse effect (nasal cytotoxicity), but partly with different target sites (different regions of the nasal mucosa), is not associated with a greater hazard than that associated with exposure to the individual chemicals.
Toxicologic Pathology | 2005
Wilbert H. M. Heijne; Robert-Jan A. N. Lamers; Peter J. van Bladeren; John P. Groten; Joop H. J. van Nesselrooij; Ben van Ommen
This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in rats that received bromobenzene to induce acute hepatic centrilobular necrosis. Bromobenzene-induced lesions were only observed after treatment with the highest of 3 dose levels. Multivariate statistical analysis showed that metabolite profiles of blood plasma were largely different from controls when the rats were treated with bromobenzene, also at doses that did not elicit histopathological changes. Changes in levels of genes and metabolites were related to the degree of necrosis, providing putative novel markers of hepatotoxicity. Levels of endogenous metabolites like alanine, lactate, tyrosine and dimethylglycine differed in plasma from treated and control rats. The metabolite profiles of urine were found to be reflective of the exposure levels. This integrated analysis of hepatic transcriptomics and plasma metabolomics was able to more sensitively detect changes related to hepatotoxicity and discover novel markers. The relation between gene expression and metabolite levels was explored and additional insight in the role of various biological pathways in bromobenzene-induced hepatic necrosis was obtained, including the involvement of apoptosis and changes in glycolysis and amino acid metabolism. The complete Table 2 is available as a supplemental file online at http://taylorandfrancis.metapress.com/openurlasp?genre=journal&issn=0192-6233. To access the file, click on the issue link for 33(4), then select this article. A download option appears at the bottom of this abstract. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org.
Archives of Toxicology | 1996
Flemming R. Cassee; Josje H.E. Arts; John P. Groten; V.J. Feron
Abstract Sensory irritation of formaldehyde (FRM), acrolein (ACR) and acetaldehyde (ACE) as measured by the decrease in breathing frequency (DBF) was studied in male Wistar rats using nose-only exposure. Groups of four rats were exposed to each of the single compounds separately or to mixtures of FRM, ACR and/or ACE. Exposure concentrations of the mixtures were chosen in such a way that summation of the effects of each chemical would be expected not to exceed 80% reduction of the breathing frequency. FRM, ACR and ACE appeared to act as sensory irritants as defined by Alarie (1966, 1973). With FRM and ACR desensitization occurred, whereas with ACE the breathing frequency gradually decreased with increasing exposure time (up to 30 min). For mixtures, the observed DBF was more pronounced than the DBF for each compound separately, but was less than the sum of the DBFs for the single compounds. A model for three compounds competing for the same receptor was applied to predict the DBF of mixtures of FRM, ACE and ACR. The results also showed that with mixtures no desensitization occurred; in fact, the breathing frequency further decreased in the last 15 min of exposure. These observations were similar to those found for ACE alone, and might have been caused by effects on the upper respiratory tract. The results of the present study allow the conclusion that sensory irritation in rats exposed to mixtures of irritant aldehydes is more pronounced than that caused by each of the aldehydes separately, and that the DBF as a result of exposure to a mixture could well be predicted using a model for competitive agonism, thus providing evidence that the combined effect of these aldehydes is basically a result of competition for a common receptor (trigeminal nerve).
Food and Chemical Toxicology | 2002
O. Tajima; E.D. Schoen; V.J. Feron; John P. Groten
This paper presents a test strategy to detect interactive effects between several mycotoxins using a DNA synthesis inhibition assay in L929 cells. The joint action of the Fusarium mycotoxins T-2 toxin (T2), deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEA) and fumonisin (FB1) was studied in a tiered approach. In the first stage, the mycotoxins were tested either jointly in a five-compound mixture, or individually. At the highest dose level, the mixture showed a clear less than additive action of the mycotoxins, as compared to the effects of the five individual compounds, whereas at lower dose levels the mycotoxins behaved additive. In the second stage, the non-additivity as established in the first experiment was further analyzed with a central composite design to detect interactions between specific mycotoxins in the mixture. This experiment confirmed less than additivity for five of the mixes tested. However, it also revealed four significant synergistic interactions between mycotoxins. Finally, two interactions that were established in stage 2 were further studied in full factorial designs involving two mycotoxins. One of the interactions observed in the central composite design was retrieved whereas the other two-factor interaction was not. It was concluded that several classes of mycotoxins when present simultaneously in a mixture might show interaction. The effect of the mixture cannot be predicted solely on the basis of the effect of the individual compounds.
Environmental Health Perspectives | 2005
Raffaella Corvi; Hans Jürgen Ahr; Sylvio Albertini; David H. Blakey; Libero Clerici; Sandra Coecke; George R. Douglas; Laura Gribaldo; John P. Groten; Bernd Haase; Karen Hamernik; Thomas Hartung; Tohru Inoue; Ian Indans; Daniela Maurici; George Orphanides; Diana Rembges; Susanna-Assunta Sansone; Jason R. Snape; Eisaku Toda; Weida Tong; Joost H.M. van Delft; Brenda Weis; Leonard M. Schechtman
This is the report of the first workshop “Validation of Toxicogenomics-Based Test Systems” held 11–12 December 2003 in Ispra, Italy. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and organized jointly by ECVAM, the U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), and the National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM). The primary aim of the workshop was for participants to discuss and define principles applicable to the validation of toxicogenomics platforms as well as validation of specific toxicologic test methods that incorporate toxicogenomics technologies. The workshop was viewed as an opportunity for initiating a dialogue between technologic experts, regulators, and the principal validation bodies and for identifying those factors to which the validation process would be applicable. It was felt that to do so now, as the technology is evolving and associated challenges are identified, would be a basis for the future validation of the technology when it reaches the appropriate stage. Because of the complexity of the issue, different aspects of the validation of toxicogenomics-based test methods were covered. The three focus areas include a) biologic validation of toxicogenomics-based test methods for regulatory decision making, b) technical and bioinformatics aspects related to validation, and c) validation issues as they relate to regulatory acceptance and use of toxicogenomics-based test methods. In this report we summarize the discussions and describe in detail the recommendations for future direction and priorities.
Trends in Food Science and Technology | 1994
John P. Groten; Peter J. van Bladeren
Abstract Cadmium (Cd) is a major occupational and environmental pollutant. Outside the industrial environment, the main route of human exposure is through food. Most oral toxicity studies have been performed with inorganic salts of Cd, but this is not the chemical form in which Cd occurs in the diet. For an assessment of human health risks it is of paramount importance to obtain more information about the bioavailability and toxicity of different Cd complexes found in the diet.