Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Huchra is active.

Publication


Featured researches published by John P. Huchra.


The Astrophysical Journal | 2001

Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant

Wendy L. Freedman; Barry F. Madore; Brad K. Gibson; Laura Ferrarese; Daniel D. Kelson; Shoko Sakai; Jeremy R. Mould; Robert C. Kennicutt; Holland C. Ford; John A. Graham; John P. Huchra; Shaun M. G. Hughes; Garth D. Illingworth; Lucas M. Macri; Peter B. Stetson

We present here the final results of the Hubble Space Telescope (HST) Key Project to measure the Hubble constant. We summarize our method, the results, and the uncertainties, tabulate our revised distances, and give the implications of these results for cosmology. Our results are based on a Cepheid calibration of several secondary distance methods applied over the range of about 60-400 Mpc. The analysis presented here benefits from a number of recent improvements and refinements, including (1) a larger LMC Cepheid sample to define the fiducial period-luminosity (PL) relations, (2) a more recent HST Wide Field and Planetary Camera 2 (WFPC2) photometric calibration, (3) a correction for Cepheid metallicity, and (4) a correction for incompleteness bias in the observed Cepheid PL samples. We adopt a distance modulus to the LMC (relative to which the more distant galaxies are measured) of μ0 = 18.50 ± 0.10 mag, or 50 kpc. New, revised distances are given for the 18 spiral galaxies for which Cepheids have been discovered as part of the Key Project, as well as for 13 additional galaxies with published Cepheid data. The new calibration results in a Cepheid distance to NGC 4258 in better agreement with the maser distance to this galaxy. Based on these revised Cepheid distances, we find values (in km s-1 Mpc-1) of H0 = 71 ± 2 ± 6 (systematic) (Type Ia supernovae), H0 = 71 ± 3 ± 7 (Tully-Fisher relation), H0 = 70 ± 5 ± 6 (surface brightness fluctuations), H0 = 72 ± 9 ± 7 (Type II supernovae), and H0 = 82 ± 6 ± 9 (fundamental plane). We combine these results for the different methods with three different weighting schemes, and find good agreement and consistency with H0 = 72 ± 8 km s-1 Mpc-1. Finally, we compare these results with other, global methods for measuring H0.


The Astrophysical Journal | 1994

H II regions and the abundance properties of spiral galaxies

Dennis Zaritsky; Robert C. Kennicutt; John P. Huchra

We investigate the relationships between the characteristic oxygen abundance, the radial abundance gradient, and the macroscopic properties of spiral galaxies by examining the properties of individual H II regions within those galaxies. Our observations of the line flux ratio (O II) lambda lambda 3726, 3729 + (O III) lambda lambda 4959, 5007)/H beta for 159 H II regions in 14 spiral galaxies are combined with published data to provide a sample of 39 disk galaxies for which (O II) + (O III)/H beta has been measured for at least five H II regions. We find that the characteristic gas-phase abundances and luminosities of spiral galaxies are strongly correlated. This relationship maps almost directly onto the luminosity-metallicity relationship of irregular galaxies and is also quite similar to that found for elliptical and dwarf spheroidal galaxies. Within our sample of spirals, a strong correlation between characteristic abundance and Hubble type also exists. The correlation between luminosity and Hubble type complicates the issue, but we discuss several interpretations of the correlations. The relationship between circular velocity and characteristic abundance is also discussed. We find that the slopes of the radial abundance gradients, when expressed in units of dex/isophotal radius, do not significantly correlate with either luminosity or Hubble type. However, the hypothesis that both early and very late type spirals have shallower gradients than intermediate spirals is consistent with the data. We find suggestive evidence that the presence of a bar induces a flatter gradient and also briefly discuss whether abundance gradients are exponential, as is usually assumed. We investigate the properties of individual H II regions in a subset of 42 regions for which we have spectra that cover almost the entire spectral range from 3500 to 9800 A. We use those data to estimate the densitites and ionizing spectra within the H II regions. We confirm that the ionizing spectrum hardens with increasing radius and decreasing abundance. We find no correlation between the ionization parameter and either radius or abundance, but this may be due to significant scatter introduced by the simple conversion of line ratios to ionization parameter.


Monthly Notices of the Royal Astronomical Society | 2009

The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures

D. Heath Jones; Mike Read; Will Saunders; Matthew Colless; T. H. Jarrett; Quentin A. Parker; A. P. Fairall; Thomas Mauch; Elaine M. Sadler; Fred G. Watson; D. Burton; Lachlan Campbell; Paul Cass; Scott M. Croom; J. A. Dawe; Kristin Fiegert; Leela M. Frankcombe; Malcolm Hartley; John P. Huchra; Dionne James; Emma M. Kirby; Ofer Lahav; John R. Lucey; Gary A. Mamon; Lesa Moore; Bruce A. Peterson; Sayuri L. Prior; Dominique Proust; K. S. Russell; V. Safouris

We report the final redshift release of the 6dF Galaxy Survey (6dFGS), a combined redshift and peculiar velocity survey over the southern sky (|b| > 10°). Its 136 304 spectra have yielded 110 256 new extragalactic redshifts and a new catalogue of 125 071 galaxies making near-complete samples with (K, H, J, r_F, b_J) ≤ (12.65, 12.95, 13.75, 15.60, 16.75). The median redshift of the survey is 0.053. Survey data, including images, spectra, photometry and redshifts, are available through an online data base. We describe changes to the information in the data base since earlier interim data releases. Future releases will include velocity dispersions, distances and peculiar velocities for the brightest early-type galaxies, comprising about 10 per cent of the sample. Here we provide redshift maps of the southern local Universe with z ≤ 0.1, showing nearby large-scale structures in hitherto unseen detail. A number of regions known previously to have a paucity of galaxies are confirmed as significantly underdense regions. The URL of the 6dFGS data base is http://www-wfau.roe.ac.uk/6dFGS.


Monthly Notices of the Royal Astronomical Society | 1996

Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data — I. The sample

Harald Ebeling; W. Voges; H. Böhringer; A. C. Edge; John P. Huchra; Ulrich G. Briel

We present an essentially complete, all-sky, X-ray flux limi ted sample of 242 Abell clusters of galaxies (six of which are double) compiled from ROSAT All-Sky Survey data. Our sample is uncontaminated in the sense that systems featuring prominent X-ray point sources such as AGN or foreground stars have been removed. The sample is limited to high Galactic latitudes (jbj� 20 � ), the nominal redshift range of the ACO catalogue of z � 0:2, and X-ray fluxes above 5:0�10 12 erg cm 2 s 1 in the 0.1 ‐ 2.4 keV band. Due to the X-ray flux limit, our sample consists, at intermediate and high redshifts, ex clusively of very X-ray luminous clusters. Since the latter tend to be also optically rich, th e sample is not affected by the optical selection effects and in particular not by the volume incompleteness known to be present in the Abell and ACO catalogues for richness class 0 and 1 clusters. Our sample is the largest X-ray flux limited sample of galaxy c lusters compiled to date and will allow investigations of unprecedented statistica l quality into the properties and distribution of rich clusters in the local Universe.


The Astrophysical Journal | 2001

The K-Band Galaxy Luminosity Function* **

C. S. Kochanek; Michael Andrew Pahre; Emilio E. Falco; John P. Huchra; Jeff A. Mader; T. H. Jarrett; T. J. Chester; Roc Michael Cutri; Stephen E. Schneider

We measured the K-band luminosity function using a complete sample of 4192 morphologically typed 2MASS galaxies with ? = 20 mag arcsec-2 isophotal magnitudes 7 -0.5) galaxies have similarly shaped luminosity functions, ?e = -0.92 ? 0.10 and ?l = -0.87 ? 0.09. The early-type galaxies are brighter, MK*e = -23.53 ? 0.06 mag compared to MK*l = -22.98 ? 0.06 mag, but less numerous, n*e = (0.45 ? 0.06) ? 10-2 h3 Mpc-3 compared to n*l = (1.01 ? 0.13) ? 10-2 h3?Mpc-3 for H0 = 100 h km s-1 Mpc-1, such that the late-type galaxies slightly dominate the K-band luminosity density, jlate/jearly = 1.17 ? 0.12. Including a factor of 1.20 ? 0.04 correction for the conversion of the isophotal survey magnitudes to total magnitudes, the local K-band luminosity density is j = (7.14 ? 0.75) ? 108 h L? Mpc-3, which implies a stellar mass density relative to critical of ?*h = (1.9 ? 0.2) ? 10-3 for a Kennicutt initial mass function (IMF) and ?*h = (3.4 ? 0.4) ? 10-3 for a Salpeter IMF. Our morphological classifications are internally consistent, are consistent with previous classifications, and lead to luminosity functions unaffected by the estimated uncertainties in the classifications. These luminosity functions accurately predict the K-band number counts and redshift distributions for K 18 mag, beyond which the results depend on galaxy evolution and merger histories.


The Astronomical Journal | 1999

BVRI Light Curves for 22 Type 1a Supernovae

Adam G. Riess; Robert P. Kirshner; Brian Paul Schmidt; Saurabh W. Jha; Peter M. Challis; Peter Marcus Garnavich; Ann A. Esin; Chris Carpenter; Randy Grashius; Rudolph E. Schild; Perry L. Berlind; John P. Huchra; Charles F. Prosser; Emilio E. Falco; Priscilla J. Benson; César A. Briceño; Warren R. Brown; Nelson Caldwell; Ian P. Dell'Antonio; Alexei V. Filippenko; Alyssa A. Goodman; Norman A. Grogin; Ted Groner; John P. Hughes; Paul J. Green; Rolf Arthur Jansen; Jan Kleyna; Jane X. Luu; Lucas M. Macri; Brian A. McLeod

We present 1210 Johnson/Cousins B, V, R, and I photometric observations of 22 recent Type Ia supernovae (SNe Ia): SNe 1993ac, 1993ae, 1994M, 1994S, 1994T, 1994Q, 1994ae, 1995D, 1995E, 1995al, 1995ac, 1995ak, 1995bd, 1996C, 1996X, 1996Z, 1996ab, 1996ai, 1996bk, 1996bl, 1996bo, and 1996bv. Most of the photometry was obtained at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics in a cooperative observing plan aimed at improving the database for SNe Ia. The redshifts of the sample range from cz = 1200 to 37,000 km s-1 with a mean of cz = 7000 km s-1.


The Astrophysical Journal | 2000

The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

Jeremy R. Mould; John P. Huchra; Wendy L. Freedman; Robert C. Kennicutt; Laura Ferrarese; Holland C. Ford; Brad K. Gibson; John A. Graham; Shaun M. G. Hughes; Garth D. Illingworth; Daniel D. Kelson; Lucas M. Macri; Barry F. Madore; Shoko Sakai; Kim M. Sebo; Nancy Ann Silbermann; Peter B. Stetson

Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc.


The Astrophysical Journal | 1986

A slice of the universe

V. De Lapparent; Margaret J. Geller; John P. Huchra

A preliminary discussion is presented of recent results obtained as part of the extension of the Center of Astrophysics redshift survey. Several features of the results are striking. The distribution of galaxies in the sample, which contains 1100 galaxies in a 6 deg x 117 deg strip going through the Coma cluster, looks like a slice through the suds in the kitchen sink. It appears that the galaxies are on the surfaces of bubble-like structures with diameters of 25-50/h-Mpc. The largest bubble in the survey has a diameter comparable with the most recent estimates of the diameter of the void in Bootes. This topology poses serious challenges for current models for the formation of large-scale structure. The best available model for generating these structures is the explosive galaxy formation theory of Ostriker and Cowie (1981).


Astrophysical Journal Supplement Series | 2000

The Northern ROSAT All-Sky (NORAS) Galaxy Cluster Survey. I. X-Ray Properties of Clusters Detected as Extended X-Ray Sources*

H. Böhringer; W. Voges; John P. Huchra; B. J. McLean; Riccardo Giacconi; P. Rosati; Richard Burg; J. Mader; Peter Schuecker; Dragan P. Simic; Stefanie Komossa; Thomas H. Reiprich; J. Retzlaff; J. Trumper

In the construction of an X-ray-selected sample of galaxy clusters for cosmological studies, we have assembled a sample of 495 X-ray sources found to show extended X-ray emission in the first processing of the ROSAT All-Sky Survey. The sample covers the celestial region with declination ? ? 0? and Galactic latitude |bII| ? 20? and comprises sources with a count rate ?0.06 counts s-1 and a source extent likelihood of L ? 7. In an optical follow-up identification program we find 378 (76%) of these sources to be clusters of galaxies.?????It was necessary to reanalyze the sources in this sample with a new X-ray source characterization technique to provide more precise values for the X-ray flux and source extent than obtained from the standard processing. This new method, termed growth curve analysis (GCA), has the advantage over previous methods in its ability to be robust, to be easy to model and to integrate into simulations, to provide diagnostic plots for visual inspection, and to make extensive use of the X-ray data. The source parameters obtained assist the source identification and provide more precise X-ray fluxes. This reanalysis is based on data from the more recent second processing of the ROSAT Survey. We present a catalog of the cluster sources with the X-ray properties obtained as well as a list of the previously flagged extended sources that are found to have a noncluster counterpart. We discuss the process of source identification from the combination of optical and X-ray data.?????To investigate the overall completeness of the cluster sample as a function of the X-ray flux limit, we extend the search for X-ray cluster sources to the data of the second processing of the ROSAT Survey for the northern sky region between 9h and 14h in right ascension. We include the search for X-ray emission of known clusters as well as a new investigation of extended X-ray sources. In the course of this search we find X-ray emission from 85 additional Abell clusters and 56 very probable cluster candidates among the newly found extended sources. A comparison of the X-ray cluster number counts of the NORAS sample with the ROSAT-ESO Flux-limited X-Ray (REFLEX) Cluster Survey results leads to an estimate of the completeness of the NORAS sample of ROSAT All-Sky Survey (RASS) I extended clusters of about 50% at an X-ray flux of FX(0.1-2.4 keV) = 3 ? 10-12 ergs s-1 cm-2. The estimated completeness achieved by adding the supplementary sample in the study area amounts to about 82% in comparison to REFLEX. The low completeness introduces an uncertainty in the use of the sample for cosmological statistical studies that will be cured with the completion of the continuing Northern ROSAT All-Sky (NORAS) Cluster Survey project.


Monthly Notices of the Royal Astronomical Society | 2004

The 6dF Galaxy Survey: samples, observational techniques and the first data release

D. Heath Jones; Will Saunders; Matthew Colless; Mike Read; Quentin A. Parker; Fred G. Watson; Lachlan Campbell; Daniel Burkey; Tom Mauch; Lesa Moore; Malcolm Hartley; Paul Cass; Dionne James; K. S. Russell; Kristin Fiegert; J. A. Dawe; John P. Huchra; T. H. Jarrett; Ofer Lahav; John R. Lucey; Gary A. Mamon; Dominique Proust; Elaine M. Sadler; Ken-Ichi Wakamatsu

The 6dF Galaxy Survey (6dFGS) aims to measure the redshifts of around 150 000 galaxies, and the peculiar velocities of a 15 000-member subsample, over almost the entire southern sky. When complete, it will be the largest redshift survey of the nearby Universe, reaching out to about z similar to 0.15, and more than an order of magnitude larger than any peculiar velocity survey to date. The targets are all galaxies brighter than K-tot = 12.75 in the 2MASS Extended Source Catalog (XSC), supplemented by 2MASS and SuperCOSMOS galaxies that complete the sample to limits of (H, J, r(F), b(J)) = (13.05, 13.75, 15.6, 16.75). Central to the survey is the Six-Degree Field (6dF) multifibre spectrograph, an instrument able to record 150 simultaneous spectra over the 5.7-field of the UK Schmidt Telescope. An adaptive tiling algorithm has been employed to ensure around 95 per cent fibring completeness over the 17 046 deg(2) of the southern sky with \b\ > 10degrees. Spectra are obtained in two observations using separate V and R gratings, that together give R similar to 1000 over at least 4000-7500 Angstrom and signal-to-noise ratio similar to10 per pixel. Redshift measurements are obtained semi-automatically, and are assigned a quality value based on visual inspection. The 6dFGS data base is available at http://www-wfau.roe.ac.uk/6dFGS/, with public data releases occurring after the completion of each third of the survey.

Collaboration


Dive into the John P. Huchra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret J. Geller

Smithsonian Astrophysical Observatory

View shared research outputs
Top Co-Authors

Avatar

John A. Graham

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Wendy L. Freedman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jeremy R. Mould

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Peter B. Stetson

Dominion Astrophysical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucas M. Macri

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Barry F. Madore

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Shoko Sakai

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge