Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Kirkpatrick is active.

Publication


Featured researches published by John P. Kirkpatrick.


Journal of Clinical Oncology | 2012

Summary Report on the Graded Prognostic Assessment: An Accurate and Facile Diagnosis-Specific Tool to Estimate Survival for Patients With Brain Metastases

Paul W. Sperduto; Norbert Kased; David Roberge; Zhiyuan Xu; Ryan Shanley; Xianghua Luo; Penny K. Sneed; Samuel T. Chao; Robert J. Weil; John H. Suh; Amit Bhatt; Ashley W. Jensen; Paul D. Brown; Helen A. Shih; John P. Kirkpatrick; Laurie E. Gaspar; John B. Fiveash; Veronica L. Chiang; Jonathan Knisely; Christina Maria Sperduto; Nan Lin; Minesh P. Mehta

PURPOSE Our group has previously published the Graded Prognostic Assessment (GPA), a prognostic index for patients with brain metastases. Updates have been published with refinements to create diagnosis-specific Graded Prognostic Assessment indices. The purpose of this report is to present the updated diagnosis-specific GPA indices in a single, unified, user-friendly report to allow ease of access and use by treating physicians. METHODS A multi-institutional retrospective (1985 to 2007) database of 3,940 patients with newly diagnosed brain metastases underwent univariate and multivariate analyses of prognostic factors associated with outcomes by primary site and treatment. Significant prognostic factors were used to define the diagnosis-specific GPA prognostic indices. A GPA of 4.0 correlates with the best prognosis, whereas a GPA of 0.0 corresponds with the worst prognosis. RESULTS Significant prognostic factors varied by diagnosis. For lung cancer, prognostic factors were Karnofsky performance score, age, presence of extracranial metastases, and number of brain metastases, confirming the original Lung-GPA. For melanoma and renal cell cancer, prognostic factors were Karnofsky performance score and the number of brain metastases. For breast cancer, prognostic factors were tumor subtype, Karnofsky performance score, and age. For GI cancer, the only prognostic factor was the Karnofsky performance score. The median survival times by GPA score and diagnosis were determined. CONCLUSION Prognostic factors for patients with brain metastases vary by diagnosis, and for each diagnosis, a robust separation into different GPA scores was discerned, implying considerable heterogeneity in outcome, even within a single tumor type. In summary, these indices and related worksheet provide an accurate and facile diagnosis-specific tool to estimate survival, potentially select appropriate treatment, and stratify clinical trials for patients with brain metastases.


International Journal of Radiation Oncology Biology Physics | 2009

Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients.

Paul W. Sperduto; Samuel T. Chao; Penny K. Sneed; Xianghua Luo; John H. Suh; David Roberge; Amit Bhatt; Ashley W. Jensen; Paul D. Brown; Helen A. Shih; John P. Kirkpatrick; Amanda L. Schwer; Laurie E. Gaspar; John B. Fiveash; Veronica L. Chiang; Jonathan Knisely; Christina Maria Sperduto; Minesh P. Mehta

PURPOSE Controversy endures regarding the optimal treatment of patients with brain metastases (BMs). Debate persists, despite many randomized trials, perhaps because BM patients are a heterogeneous population. The purpose of the present study was to identify significant diagnosis-specific prognostic factors and indexes (Diagnosis-Specific Graded Prognostic Assessment [DS-GPA]). METHODS AND MATERIALS A retrospective database of 5,067 patients treated for BMs between 1985 and 2007 was generated from 11 institutions. After exclusion of the patients with recurrent BMs or incomplete data, 4,259 patients with newly diagnosed BMs remained eligible for analysis. Univariate and multivariate analyses of the prognostic factors and outcomes by primary site and treatment were performed. The significant prognostic factors were determined and used to define the DS-GPA prognostic indexes. The DS-GPA scores were calculated and correlated with the outcomes, stratified by diagnosis and treatment. RESULTS The significant prognostic factors varied by diagnosis. For non-small-cell lung cancer and small-cell lung cancer, the significant prognostic factors were Karnofsky performance status, age, presence of extracranial metastases, and number of BMs, confirming the original GPA for these diagnoses. For melanoma and renal cell cancer, the significant prognostic factors were Karnofsky performance status and the number of BMs. For breast and gastrointestinal cancer, the only significant prognostic factor was the Karnofsky performance status. Two new DS-GPA indexes were thus designed for breast/gastrointestinal cancer and melanoma/renal cell carcinoma. The median survival by GPA score, diagnosis, and treatment were determined. CONCLUSION The prognostic factors for BM patients varied by diagnosis. The original GPA was confirmed for non-small-cell lung cancer and small-cell lung cancer. New DS-GPA indexes were determined for other histologic types and correlated with the outcome, and statistical separation between the groups was confirmed. These data should be considered in the design of future randomized trials and in clinical decision-making.


Seminars in Radiation Oncology | 2008

The Linear-Quadratic Model Is Inappropriate to Model High Dose per Fraction Effects in Radiosurgery

John P. Kirkpatrick; Jeffrey Meyer; Lawrence B. Marks

The linear-quadratic (LQ) model is widely used to model the effect of total dose and dose per fraction in conventionally fractionated radiotherapy. Much of the data used to generate the model are obtained in vitro at doses well below those used in radiosurgery. Clinically, the LQ model often underestimates tumor control observed at radiosurgical doses. The underlying mechanisms implied by the LQ model do not reflect the vascular and stromal damage produced at the high doses per fraction encountered in radiosurgery and ignore the impact of radioresistant subpopulations of cells. The appropriate modeling of both tumor control and normal tissue toxicity in radiosurgery requires the application of emerging understanding of molecular-, cellular-, and tissue-level effects of high-dose/fraction-ionizing radiation and the role of cancer stem cells.


International Journal of Radiation Oncology Biology Physics | 2010

RADIATION DOSE-VOLUME EFFECTS IN THE SPINAL CORD

John P. Kirkpatrick; Albert J. van der Kogel; Timothy E. Schultheiss

Dose-volume data for myelopathy in humans treated with radiotherapy (RT) to the spine is reviewed, along with pertinent preclinical data. Using conventional fractionation of 1.8-2 Gy/fraction to the full-thickness cord, the estimated risk of myelopathy is <1% and <10% at 54 Gy and 61 Gy, respectively, with a calculated strong dependence on dose/fraction (alpha/beta = 0.87 Gy.) Reirradiation data in animals and humans suggest partial repair of RT-induced subclinical damage becoming evident about 6 months post-RT and increasing over the next 2 years. Reports of myelopathy from stereotactic radiosurgery to spinal lesions appear rare (<1%) when the maximum spinal cord dose is limited to the equivalent of 13 Gy in a single fraction or 20 Gy in three fractions. However, long-term data are insufficient to calculate a dose-volume relationship for myelopathy when the partial cord is treated with a hypofractionated regimen.


International Journal of Radiation Oncology Biology Physics | 2010

RADIATION DOSE-VOLUME EFFECTS OF OPTIC NERVES AND CHIASM

Charles Mayo; Mary K. Martel; Lawrence B. Marks; John C. Flickinger; Jiho Nam; John P. Kirkpatrick

Publications relating radiation toxicity of the optic nerves and chiasm to quantitative dose and dose-volume measures were reviewed. Few studies have adequate data for dose-volume outcome modeling. The risk of toxicity increased markedly at doses >60 Gy at approximately 1.8 Gy/fraction and at >12 Gy for single-fraction radiosurgery. The evidence is strong that radiation tolerance is increased with a reduction in the dose per fraction. Models of threshold tolerance were examined.


Clinical Cancer Research | 2006

Erythropoietin Biology in Cancer

Matthew E. Hardee; Murat O. Arcasoy; Kimberly L. Blackwell; John P. Kirkpatrick; Mark W. Dewhirst

Erythropoietin (Epo) has long been known to be the principal hematopoietic growth factor that regulates cellular proliferation and differentiation along the erythroid lineage. Recent studies have shown that Epo is a pleiotropic cytokine that is proangiogenic and exerts broad tissue-protective effects in diverse nonhematopoietic organs. Recombinant Epo (rEpo) has been widely used in the clinic to prevent or treat malignancy-associated anemia. A series of clinical trials have documented the efficacy of rEpo in reducing RBC transfusion requirements and improving quality of life in cancer patients, and a recent meta-analysis suggested a positive effect on survival. However, two randomized trials reported negative outcomes with rEpo, as patients in the rEpo arm fared worse than their placebo-treated counterparts with respect to progression-free survival. The expression of Epo receptor (EpoR) in cancer cells has raised the possibility that exogenous rEpo may exert direct effects on tumor cells associated with the potential for stimulation of proliferation, inhibition of apoptosis, or modulation of sensitivity to chemoradiation therapy. The presence of an autocrine-paracrine Epo-EpoR system in tumors and potential effects of Epo on tumor microenvironment and angiogenesis are consistent with a complex biology for Epo-EpoR signaling in cancer that requires further research. This review describes Epo and EpoR biology, focusing on the pleiotropic effects of Epo on nonhematopoietic tissues as well as the expression and function of EpoR in cancer cells.


International Journal of Radiation Oncology Biology Physics | 2012

Effect of Tumor Subtype on Survival and the Graded Prognostic Assessment for Patients With Breast Cancer and Brain Metastases

Paul W. Sperduto; Norbert Kased; David Roberge; Zhiyuan Xu; Ryan Shanley; Xianghua Luo; Penny K. Sneed; Samuel T. Chao; Robert J. Weil; John H. Suh; Amit Bhatt; Ashley W. Jensen; Paul D. Brown; Helen A. Shih; John P. Kirkpatrick; Laurie E. Gaspar; John B. Fiveash; Veronica L. Chiang; Jonathan Knisely; Christina Maria Sperduto; Nan Lin; Minesh P. Mehta

PURPOSE The diagnosis-specific Graded Prognostic Assessment (GPA) was published to clarify prognosis for patients with brain metastases. This study refines the existing Breast-GPA by analyzing a larger cohort and tumor subtype. METHODS AND MATERIALS A multi-institutional retrospective database of 400 breast cancer patients treated for newly diagnosed brain metastases was generated. Prognostic factors significant for survival were analyzed by multivariate Cox regression and recursive partitioning analysis (RPA). Factors were weighted by the magnitude of their regression coefficients to define the GPA index. RESULTS Significant prognostic factors by multivariate Cox regression and RPA were Karnofsky performance status (KPS), HER2, ER/PR status, and the interaction between ER/PR and HER2. RPA showed age was significant for patients with KPS 60 to 80. The median survival time (MST) overall was 13.8 months, and for GPA scores of 0 to 1.0, 1.5 to 2.0, 2.5 to 3.0, and 3.5 to 4.0 were 3.4 (n = 23), 7.7 (n = 104), 15.1 (n = 140), and 25.3 (n = 133) months, respectively (p < 0.0001). Among HER2-negative patients, being ER/PR positive improved MST from 6.4 to 9.7 months, whereas in HER2-positive patients, being ER/PR positive improved MST from 17.9 to 20.7 months. The log-rank statistic (predictive power) was 110 for the Breast-GPA vs. 55 for tumor subtype. CONCLUSIONS The Breast-GPA documents wide variation in prognosis and shows clear separation between subgroups of patients with breast cancer and brain metastases. This tool will aid clinical decision making and stratification in clinical trials. These data confirm the effect of tumor subtype on survival and show the Breast-GPA offers significantly more predictive power than the tumor subtype alone.


Clinical Cancer Research | 2011

The Addition of Bevacizumab to Standard Radiation Therapy and Temozolomide Followed by Bevacizumab, Temozolomide and Irinotecan for Newly Diagnosed Glioblastoma

James J. Vredenburgh; Annick Desjardins; David A. Reardon; Katherine B. Peters; James E. Herndon; Jennifer Marcello; John P. Kirkpatrick; John H. Sampson; Leighann Bailey; Stevie Threatt; Allan H. Friedman; Darell D. Bigner; Henry S. Friedman

Purpose: To determine if the addition of bevacizumab to radiation therapy and temozolomide, followed by bevacizumab, temozolomide, and irinotecan, for newly diagnosed glioblastoma patients is safe and effective. Experimental Design: A total of 75 patients with newly diagnosed glioblastoma were enrolled in the phase II trial that investigated the addition of bevacizumab to standard radiation therapy and daily temozolomide followed by the addition of bevacizumab and irinotecan to adjuvant temozolomide. The bevacizumab was given at 10 mg/kg every 14 days beginning a minimum of 4 weeks postcraniotomy. Two weeks after radiation therapy, the patients began 6 to 12 cycles of 5-day temozolomide with bevacizumab and irinotecan every 14 days. The primary endpoint was the proportion of patients alive 16 months after informed consent. Results: The therapy had moderate toxicity. Three patients, one of whom had a grade 2 central nervous system hemorrhage, came off study during radiation therapy. Seventy patients started the postradiation therapy, and 16 (23%) terminated this adjuvant therapy early because of toxicity. The median overall survival was 21.2 months (95% CI: 17.2–25.4), and 65% of the patients were alive at 16 months (95% CI: 53.4–74.9). The median progression-free survival was 14.2 months (95% CI: 12–16). Conclusion: The addition of bevacizumab to standard radiation therapy and temozolomide, followed by bevacizumab, irinotecan, and temozolomide, for the treatment of newly diagnosed glioblastoma has moderate toxicity and may improve efficacy compared with historical controls. The results from phase III trials are required before the role of bevacizumab for newly diagnosed glioblastoma is established. Clin Cancer Res; 17(12); 4119–24. ©2011 AACR.


Cancer Research | 2004

Enhancement of Hypoxia-Induced Tumor Cell Death In vitro and Radiation Therapy In vivo by Use of Small Interfering RNA Targeted to Hypoxia-Inducible Factor-1α

Xiuwu Zhang; Takashi Kon; He Wang; Fang Li; Qian Huang; Zahid N. Rabbani; John P. Kirkpatrick; Zeljko Vujaskovic; Mark W. Dewhirst; Chuan-Yuan Li

Hypoxia-inducible factor-1α (HIF-1α) is an important transcriptional factor that is activated when mammalian cells experience hypoxia, a tumor microenvironmental condition that plays pivotal roles in tumor progression and treatment. In this study, we examined the idea of down-regulating HIF-1α in tumor cells for therapeutic gain. We show that the expression levels of HIF-1α can be significantly attenuated by use of the recently established small interfering RNA technology in combination with adenovirus-mediated gene transfer. Down-regulation of the HIF-1α protein enhanced hypoxia-mediated tumor cell apoptosis in vitro. Subcutaneous tumor growth was also prevented from cells with attenuated HIF-1α expression. In addition, intratumoral injection of adenovirus encoding the HIF-1α-targeted small interfering RNA had a small but significant effect on tumor growth when combined with ionizing radiation. Therefore, our results provide proof of HIF-1α as an effective target for anticancer therapy. They also suggest that an adenovirus-based small interfering RNA gene transfer approach may be a potentially effective adjuvant strategy for cancer treatment.


International Journal of Radiation Oncology Biology Physics | 2009

Volumetric Arc Intensity–Modulated Therapy for Spine Body Radiotherapy: Comparison With Static Intensity-Modulated Treatment

Q. Jackie Wu; S Yoo; John P. Kirkpatrick; D Thongphiew; Fang-Fang Yin

PURPOSE This clinical study evaluates the feasibility of using volumetric arc-modulated treatment (VMAT) for spine stereotactic body radiotherapy (SBRT) to achieve highly conformal dose distributions that spare adjacent organs at risk (OAR) with reduced treatment time. METHODS AND MATERIALS Ten spine SBRT patients were studied retrospectively. The intensity-modulated radiotherapy (IMRT) and VMAT plans were generated using either one or two arcs. Planning target volume (PTV) dose coverage, OAR dose sparing, and normal tissue integral dose were measured and compared. Differences in treatment delivery were also analyzed. RESULTS The PTV DVHs were comparable between VMAT and IMRT plans in the shoulder (D(99%)-D(90%)), slope (D(90%)-D(10%)), and tail (D(10%)-D(1%)) regions. Only VMAT(2arc) had a better conformity index than IMRT (1.09 vs. 1.15, p = 0.007). For cord sparing, IMRT was the best, and VMAT(1arc) was the worst. Use of IMRT achieved greater than 10% more D(1%) sparing for six of 10 cases and 7% to 15% more D(10%) sparing over the VAMT(1arc). The differences between IMRT and VAMT(2arc) were smaller and statistically nonsignificant at all dose levels. The differences were also small and statistically nonsignificant for other OAR sparing. The mean monitor units (MUs) were 8711, 7730, and 6317 for IMRT, VMAT(1arc), and VMAT(2arc) plans, respectively, with a 26% reduction from IMRT to VMAT(2arc). The mean treatment time was 15.86, 8.56, and 7.88 min for IMRT, VMAT(1arc,) and VMAT(2arc). The difference in integral dose was statistically nonsignificant. CONCLUSIONS Although VMAT provided comparable PTV coverage for spine SBRT, 1arc showed significantly worse spinal cord sparing compared with IMRT, whereas 2arc was comparable to IMRT. Treatment efficiency is substantially improved with the VMAT.

Collaboration


Dive into the John P. Kirkpatrick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge