Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Manis is active.

Publication


Featured researches published by John P. Manis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice

Hwei-Ling Cheng; Raul Mostoslavsky; Shin'ichi Saito; John P. Manis; Yansong Gu; Parin Patel; Roderick T. Bronson; Ettore Appella; Frederick W. Alt; Katrin F. Chua

SIRT1 is a mammalian homolog of the Saccharomyces cerevisiae chromatin silencing factor Sir2. Dominant-negative and overexpression studies have implicated a role for SIRT1 in deacetylating the p53 tumor suppressor protein to dampen apoptotic and cellular senescence pathways. To elucidate SIRT1 function in normal cells, we used gene-targeted mutation to generate mice that express either a mutant SIRT1 protein that lacks part of the catalytic domain or has no detectable SIRT1 protein at all. Both types of SIRT1 mutant mice and cells had essentially the same phenotypes. SIRT1 mutant mice were small, and exhibited notable developmental defects of the retina and heart, and only infrequently survived postnatally. Moreover, SIRT1-deficient cells exhibited p53 hyperacetylation after DNA damage and increased ionizing radiation-induced thymocyte apoptosis. In SIRT1-deficient embryonic fibroblasts, however, p53 hyperacetylation after DNA damage was not accompanied by increased p21 protein induction or DNA damage sensitivity. Together, our observations provide direct evidence that endogenous SIRT1 protein regulates p53 acetylation and p53-dependent apoptosis, and show that the function of this enzyme is required for specific developmental processes.


Nature | 2000

Interplay of p53 and DNA-repair protein xrcc4 in tumorigenesis, genomic stability and development

Yijie Gao; David O. Ferguson; Wei Xie; John P. Manis; Jo Ann Sekiguchi; Karen M. Frank; Jayanta Chaudhuri; James W. Horner; Ronald A. DePinho; Frederick W. Alt

XRCC4 is a non-homologous end-joining protein employed in DNA double strand break repair and in V(D)J recombination. In mice, XRCC4-deficiency causes a pleiotropic phenotype, which includes embryonic lethality and massive neuronal apoptosis. When DNA damage is not repaired, activation of the cell cycle checkpoint protein p53 can lead to apoptosis. Here we show that p53-deficiency rescues several aspects of the XRCC4-deficient phenotype, including embryonic lethality, neuronal apoptosis, and impaired cellular proliferation. However, there was no significant rescue of impaired V(D)J recombination or lymphocyte development. Although p53-deficiency allowed postnatal survival of XRCC4-deficient mice, they routinely succumbed to pro-B-cell lymphomas which had chromosomal translocations linking amplified c-myc oncogene and IgH locus sequences. Moreover, even XRCC4-deficient embryonic fibroblasts exhibited marked genomic instability including chromosomal translocations. Our findings support a crucial role for the non-homologous end-joining pathway as a caretaker of the mammalian genome, a role required both for normal development and for suppression of tumours.


Nature | 2007

IgH class switching and translocations use a robust non-classical end-joining pathway.

Catherine T. Yan; Cristian Boboila; Ellen Kris Souza; Sonia Franco; Thomas Hickernell; Michael P. Murphy; Sunil Gumaste; Mark B. Geyer; Ali A. Zarrin; John P. Manis; Klaus Rajewsky; Frederick W. Alt

Immunoglobulin variable region exons are assembled in developing B cells by V(D)J recombination. Once mature, these cells undergo class-switch recombination (CSR) when activated by antigen. CSR changes the heavy chain constant region exons (Ch) expressed with a given variable region exon from Cμ to a downstream Ch (for example, Cγ, Cε or Cα), thereby switching expression from IgM to IgG, IgE or IgA. Both V(D)J recombination and CSR involve the introduction of DNA double-strand breaks and their repair by means of end joining. For CSR, double-strand breaks are introduced into switch regions that flank Cμ and a downstream Ch, followed by fusion of the broken switch regions. In mammalian cells, the ‘classical’ non-homologous end joining (C-NHEJ) pathway repairs both general DNA double-strand breaks and programmed double-strand breaks generated by V(D)J recombination. C-NHEJ, as observed during V(D)J recombination, joins ends that lack homology to form ‘direct’ joins, and also joins ends with several base-pair homologies to form microhomology joins. CSR joins also display direct and microhomology joins, and CSR has been suggested to use C-NHEJ. Xrcc4 and DNA ligase IV (Lig4), which cooperatively catalyse the ligation step of C-NHEJ, are the most specific C-NHEJ factors; they are absolutely required for V(D)J recombination and have no known functions other than C-NHEJ. Here we assess whether C-NHEJ is also critical for CSR by assaying CSR in Xrcc4- or Lig4-deficient mouse B cells. C-NHEJ indeed catalyses CSR joins, because C-NHEJ-deficient B cells had decreased CSR and substantial levels of IgH locus (immunoglobulin heavy chain, encoded by Igh) chromosomal breaks. However, an alternative end-joining pathway, which is markedly biased towards microhomology joins, supports CSR at unexpectedly robust levels in C-NHEJ-deficient B cells. In the absence of C-NHEJ, this alternative end-joining pathway also frequently joins Igh locus breaks to other chromosomes to generate translocations.


Cell | 2003

Histone H2AX: A Dosage-Dependent Suppressor of Oncogenic Translocations and Tumors

Craig H. Bassing; Heikyung Suh; David O. Ferguson; Katrin F. Chua; John P. Manis; Mark Eckersdorff; Megan Gleason; Rodrick Bronson; Charles Lee; Frederick W. Alt

We employed gene targeting to study H2AX, a histone variant phosphorylated in chromatin surrounding DNA double-strand breaks. Mice deficient for both H2AX and p53 (H(delta/delta)P(-/-)) rapidly developed immature T and B lymphomas and solid tumors. Moreover, H2AX haploinsufficiency caused genomic instability in normal cells and, on a p53-deficient background, early onset of various tumors including more mature B lymphomas. Most H2AX(delta/delta)p53(-/-) or H2AX(+/delta)p53(-/-) B lineage lymphomas harbored chromosome 12 (IgH)/15 (c-myc) translocations with hallmarks of either aberrant V(D)J or class switch recombination. In contrast, H2AX(delta/delta)p53(-/-) thymic lymphomas had clonal translocations that did not involve antigen receptor loci and which likely occurred during cellular expansion. Thus, H2AX helps prevent aberrant repair of both programmed and general DNA breakage and, thereby, functions as a dosage-dependent suppressor of genomic instability and tumors in mice. Notably, H2AX maps to a cytogenetic region frequently altered in human cancers, possibly implicating similar functions in man.


Molecular Cell | 2000

DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway.

Karen M. Frank; Norman E. Sharpless; Yijie Gao; JoAnn Sekiguchi; David O. Ferguson; Chengming Zhu; John P. Manis; James W. Horner; Ronald A. DePinho; Frederick W. Alt

DNA ligase IV (LIG4) is a nonhomologous end-joining (NHEJ) protein used for V(D)J recombination and DNA repair. In mice, Lig4 deficiency causes embryonic lethality, massive neuronal apoptosis, arrested lymphogenesis, and various cellular defects. Herein, we assess potential roles in this phenotype for INK4a/ARF and p53, two proteins implicated in apoptosis and senescence. INK4a/ARF deficiency rescued proliferation/senescence defects of Lig4-deficient fibroblasts but not other phenotypic aspects. In contrast, p53 deficiency rescued embryonic lethality, neuronal apoptosis, and fibroblast proliferation/senescence defects but not lymphocyte development or radiosensitivity. Young Lig4/p53 double null mice routinely died from pro-B lymphomas. Thus, in the context of Lig4 deficiency, embryonic lethality and neuronal apoptosis likely result from a p53-dependent response to unrepaired DNA damage, and neuronal apoptosis and lymphocyte developmental defects can be mechanistically dissociated.


Immunity | 1997

Growth retardation and leaky SCID phenotype of Ku70-deficient mice

Yansong Gu; Katherine J. Seidl; Gary Rathbun; Chengming Zhu; John P. Manis; Nienke van der Stoep; Laurie Davidson; Hwei Ling Cheng; JoAnn Sekiguchi; Karen M. Frank; Patricia Stanhope-Baker; Mark S. Schlissel; David Roth; Frederick W. Alt

Ku70, Ku80, and DNA-PKcs are subunits of the DNA-dependent protein kinase (DNA-PK), an enzyme implicated in DNA double-stranded break repair and V(D)J recombination. Our Ku70-deficient mice were about 50% the size of control littermates, and their fibroblasts were ionizing radiation sensitive and displayed premature senescence associated with the accumulation of nondividing cells. Ku70-deficient mice lacked mature B cells or serum immunoglobulin but, unexpectedly, reproducibly developed small populations of thymic and peripheral alpha/beta T lineage cells and had a significant incidence of thymic lymphomas. In association with B and T cell developmental defects, Ku70-deficient cells were severely impaired for joining of V(D)J coding and recombination signal sequences. These unanticipated features of the Ku70-deficient phenotype with respect to lymphocyte development and V(D)J recombination may reflect differential functions of the three DNA-PK components.


Cell | 2002

Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations.

Chengming Zhu; Kevin D. Mills; David O. Ferguson; Charles Lee; John P. Manis; James Fleming; Yijie Gao; Cynthia C. Morton; Frederick W. Alt

Amplification of large genomic regions associated with complex translocations (complicons) is a basis for tumor progression and drug resistance. We show that pro-B lymphomas in mice deficient for both p53 and nonhomologous end-joining (NHEJ) contain complicons that coamplify c-myc (chromosome 15) and IgH (chromosome 12) sequences. While all carry a translocated (12;15) chromosome, coamplified sequences are located within a separate complicon that often involves a third chromosome. Complicon formation is initiated by recombination of RAG1/2-catalyzed IgH locus double-strand breaks with sequences downstream of c-myc, generating a dicentric (15;12) chromosome as an amplification intermediate. This recombination event employs a microhomology-based end-joining repair pathway, as opposed to classic NHEJ or homologous recombination. These findings suggest a general model for oncogenic complicon formation.


Trends in Immunology | 2002

Mechanism and control of class-switch recombination

John P. Manis; Ming Tian; Frederick W. Alt

Class-switch recombination (CSR) occurs by an unusual and intriguing mechanism that has not been clearly elucidated as yet. Currently, we know that this mechanism involves recombination between large and highly repetitive switch (S) regions, is targeted by S-region transcription and requires the activity of the newly discovered activation-induced deaminase (AID). In this review, we discuss the potential role of these factors in CSR, discuss potential relationships between CSR and somatic hypermutation, and speculate how CSR and related mechanisms might contribute to genomic instability.


Nature Immunology | 2004

53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination

John P. Manis; Julio C. Morales; Zhenfang Xia; Jeffery L. Kutok; Frederick W. Alt; Phillip B. Carpenter

The mammalian protein 53BP1 is activated in many cell types in response to genotoxic stress, including DNA double-strand breaks (DSBs). We now examine potential functions for 53BP1 in the specific genomic alterations that occur in B lymphocytes. Although 53BP1 was dispensable for V(D)J recombination and somatic hypermutation (SHM), the processes by which immunoglobulin (Ig) variable region exons are assembled and mutated, it was required for Igh class-switch recombination (CSR), the recombination and deletion process by which Igh constant region genes are exchanged. When stimulated to undergo CSR, 53BP1-deficient cells exhibited no defect in CH germline transcription or AID expression, however these cells had a profound decrease in switch junctions. The current findings, in combination with the known 53BP1 functions and how it is activated, implicate the DNA damage response to DSBs in the joining phase of class-switch recombination.


Molecular Cell | 2002

Leaky Scid Phenotype Associated with Defective V(D)J Coding End Processing in Artemis-Deficient Mice

Sean Rooney; JoAnn Sekiguchi; Chengming Zhu; Hwei Ling Cheng; John P. Manis; Scott Whitlow; Jeff DeVido; Dan Foy; Jayanta Chaudhuri; David B. Lombard; Frederick W. Alt

Radiosensitive severe combined immune deficiency in humans results from mutations in Artemis, a protein which, when coupled with DNA-dependent protein kinase catalytic subunit (DNA-PKcs), possesses DNA hairpin-opening activity in vitro. Here, we report that Artemis-deficient mice have an overall phenotype similar to that of DNA-PKcs-deficient mice-including severe combined immunodeficiency associated with defects in opening and joining V(D)J coding hairpin ends and increased cellular ionizing radiation sensitivity. While these findings strongly support the notion that Artemis functions with DNA-PKcs in a subset of NHEJ functions, differences between Artemis- and DNA-PKcs-deficient phenotypes, most notably decreased fidelity of V(D)J signal sequence joining in DNA-PKcs-deficient but not Artemis-deficient fibroblasts, suggest additional functions for DNA-PKcs. Finally, Artemis deficiency leads to chromosomal instability in fibroblasts, demonstrating that Artemis functions as a genomic caretaker.

Collaboration


Dive into the John P. Manis's collaboration.

Top Co-Authors

Avatar

Frederick W. Alt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Raif S. Geha

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haifa H. Jabara

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jayanta Chaudhuri

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sonia Franco

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Laurie Davidson

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge