Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. McCutcheon is active.

Publication


Featured researches published by John P. McCutcheon.


Nature Reviews Microbiology | 2012

Extreme genome reduction in symbiotic bacteria.

John P. McCutcheon; Nancy A. Moran

Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.


Nature | 1999

Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution

William M. Clemons; Joanna L. C. May; Brian T. Wimberly; John P. McCutcheon; Malcolm Capel; V. Ramakrishnan

The 30S ribosomal subunit binds messenger RNA and the anticodon stem-loop of transfer RNA during protein synthesis. A crystallographic analysis of the structure of the subunit from the bacterium Thermus thermophilus is presented. At a resolution of 5.5 Å, the phosphate backbone of the ribosomal RNA is visible, as are the α-helices of the ribosomal proteins, enabling double-helical regions of RNA to be identified throughout the subunit, all seven of the small-subunit proteins of known crystal structure to be positioned in the electron density map, and the fold of the entire central domain of the small-subunit ribosomal RNA to be determined.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Parallel genomic evolution and metabolic interdependence in an ancient symbiosis

John P. McCutcheon; Nancy A. Moran

Obligate symbioses with nutrient-provisioning bacteria have originated often during animal evolution and have been key to the ecological diversification of many invertebrate groups. To date, genome sequences of insect nutritional symbionts have been restricted to a related cluster within Gammaproteobacteria and have revealed distinctive features, including extreme reduction, rapid evolution, and biased nucleotide composition. Using recently developed sequencing technologies, we show that Sulcia muelleri, a member of the Bacteroidetes, underwent similar genomic changes during coevolution with its sap-feeding insect host (sharpshooters) and the coresident symbiont Baumannia cicadellinicola (Gammaproteobacteria). At 245 kilobases, Sulcias genome is approximately one tenth of the smallest known Bacteroidetes genome and among the smallest for any cellular organism. Analysis of the coding capacities of Sulcia and Baumannia reveals striking complementarity in metabolic capabilities.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Convergent evolution of metabolic roles in bacterial co-symbionts of insects

John P. McCutcheon; Bradon R. McDonald; Nancy A. Moran

A strictly host-dependent lifestyle has profound evolutionary consequences for bacterial genomes. Most prominent is a sometimes-dramatic amount of gene loss and genome reduction. Recently, highly reduced genomes from the co-resident intracellular symbionts of sharpshooters were shown to exhibit a striking level of metabolic interdependence. One symbiont, called Sulcia muelleri (Bacteroidetes), can produce eight of the 10 essential amino acids, despite having a genome of only 245 kb. The other, Baumannia cicadellinicola (γ-Proteobacteria), can produce the remaining two essential amino acids as well as many vitamins. Cicadas also contain the symbiont Sulcia, but lack Baumannia and instead contain the co-resident symbiont Hodgkinia cicadicola (α-Proteobacteria). Here we report that, despite at least 200 million years of divergence, the two Sulcia genomes have nearly identical gene content and gene order. Additionally, we show that despite being phylogenetically distant and drastically different in genome size and architecture, Hodgkinia and Baumannia have converged on gene sets conferring similar capabilities for essential amino acid biosynthesis, in both cases precisely complementary to the pathways conserved in Sulcia. In contrast, they have completely divergent capabilities for vitamin biosynthesis. Despite having the smallest gene set known in bacteria, Hodgkinia devotes at least 7% of its proteome to cobalamin (vitamin B12) biosynthesis, a significant metabolic burden. The presence of these genes can be explained by Hodgkinias retention of the cobalamin-dependent version of methionine synthase instead of the cobalamin-independent version found in Baumannia, a situation that necessitates retention of cobalamin biosynthetic capabilities to make the essential amino acid methionine.


Cell | 2013

Horizontal Gene Transfer from Diverse Bacteria to an Insect Genome Enables a Tripartite Nested Mealybug Symbiosis

Filip Husník; Naruo Nikoh; Ryuichi Koga; Laura Ross; Rebecca P. Duncan; Manabu Fujie; Makiko Tanaka; Nori Satoh; Doris Bachtrog; Alex C. C. Wilson; Carol D. von Dohlen; Takema Fukatsu; John P. McCutcheon

The smallest reported bacterial genome belongs to Tremblaya princeps, a symbiont of Planococcus citri mealybugs (PCIT). Tremblaya PCIT not only has a 139 kb genome, but possesses its own bacterial endosymbiont, Moranella endobia. Genome and transcriptome sequencing, including genome sequencing from a Tremblaya lineage lacking intracellular bacteria, reveals that the extreme genomic degeneracy of Tremblaya PCIT likely resulted from acquiring Moranella as an endosymbiont. In addition, at least 22 expressed horizontally transferred genes from multiple diverse bacteria to the mealybug genome likely complement missing symbiont genes. However, none of these horizontally transferred genes are from Tremblaya, showing that genome reduction in this symbiont has not been enabled by gene transfer to the host nucleus. Our results thus indicate that the functioning of this three-way symbiosis is dependent on genes from at least six lineages of organisms and reveal a path to intimate endosymbiosis distinct from that followed by organelles.


Science | 2016

Basidiomycete yeasts in the cortex of ascomycete macrolichens

Toby Spribille; Veera Tuovinen; Philipp Resl; Dan Vanderpool; Heimo Wolinski; M. Catherine Aime; Kevin Schneider; Edith Stabentheiner; Merje Toome-Heller; Göran Thor; Helmut Mayrhofer; Hanna Johannesson; John P. McCutcheon

Lichens assemble in three parts Lichen growth forms cannot be recapitulated in the laboratory by culturing the plant and fungal partners together. Spribille et al. have discovered that the classical binary view of lichens is too simple. Instead, North American beard-like lichens are constituted of not two but three symbiotic partners: an ascomycetous fungus, a photosynthetic alga, and, unexpectedly, a basidiomycetous yeast. The yeast cells form the characteristic cortex of the lichen thallus and may be important for its shape. The yeasts are ubiquitous and essential partners for most lichens and not the result of lichens being colonized or parasitized by other organisms. Science, this issue p. 488 Complete functioning lichen thalli have three partners: alga and ascomycete, plus a basidiomycete yeast. For over 140 years, lichens have been regarded as a symbiosis between a single fungus, usually an ascomycete, and a photosynthesizing partner. Other fungi have long been known to occur as occasional parasites or endophytes, but the one lichen–one fungus paradigm has seldom been questioned. Here we show that many common lichens are composed of the known ascomycete, the photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts. These yeasts are embedded in the cortex, and their abundance correlates with previously unexplained variations in phenotype. Basidiomycete lineages maintain close associations with specific lichen species over large geographical distances and have been found on six continents. The structurally important lichen cortex, long treated as a zone of differentiated ascomycete cells, appears to consistently contain two unrelated fungi.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis

Filip Husník; John P. McCutcheon

Significance Mealybugs are plant sap-sucking insects with a nested symbiotic arrangement, where one bacterium lives inside another bacterium, which together live inside insect cells. These two bacteria, along with genes transferred from other bacteria to the insect genome, allow the insect to survive on its nutrient-poor diet. Here, we show that the innermost bacterium in this nested symbiosis was replaced several times over evolutionary history. These results show that highly integrated and interdependent symbiotic systems can experience symbiont replacement and suggest that similar dynamics could have occurred in building the mosaic metabolic pathways seen in mitochondria and plastids. Stable endosymbiosis of a bacterium into a host cell promotes cellular and genomic complexity. The mealybug Planococcus citri has two bacterial endosymbionts with an unusual nested arrangement: the γ-proteobacterium Moranella endobia lives in the cytoplasm of the β-proteobacterium Tremblaya princeps. These two bacteria, along with genes horizontally transferred from other bacteria to the P. citri genome, encode gene sets that form an interdependent metabolic patchwork. Here, we test the stability of this three-way symbiosis by sequencing host and symbiont genomes for five diverse mealybug species and find marked fluidity over evolutionary time. Although Tremblaya is the result of a single infection in the ancestor of mealybugs, the γ-proteobacterial symbionts result from multiple replacements of inferred different ages from related but distinct bacterial lineages. Our data show that symbiont replacement can happen even in the most intricate symbiotic arrangements and that preexisting horizontally transferred genes can remain stable on genomes in the face of extensive symbiont turnover.


Cell | 2014

Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one.

James T. Van Leuven; Russell C. Meister; Chris Simon; John P. McCutcheon

Mutualisms that become evolutionarily stable give rise to organismal interdependencies. Some insects have developed intracellular associations with communities of bacteria, where the interdependencies are manifest in patterns of complementary gene loss and retention among members of the symbiosis. Here, using comparative genomics and microscopy, we show that a three-member symbiotic community has become a four-way assemblage through a novel bacterial lineage-splitting event. In some but not all cicada species of the genus Tettigades, the endosymbiont Candidatus Hodgkinia cicadicola has split into two new cytologically distinct but metabolically interdependent species. Although these new bacterial genomes are partitioned into discrete cell types, the intergenome patterns of gene loss and retention are almost perfectly complementary. These results defy easy classification: they show genomic patterns consistent with those observed after both speciation and whole-genome duplication. We suggest that our results highlight the potential power of nonadaptive forces in shaping organismal complexity.


Molecular Ecology | 2014

Population genomics of a symbiont in the early stages of a pest invasion

Amanda M. V. Brown; Lynn Y. Huynh; Caitlin M. Bolender; Kelly G. Nelson; John P. McCutcheon

Invasive species often depend on microbial symbionts, but few studies have examined the evolutionary dynamics of symbionts during the early stages of an invasion. The insect Megacopta cribraria and its bacterial nutritional symbiont Candidatus Ishikawaella capsulata invaded the southeastern US in 2009. While M. cribraria was initially discovered on wild kudzu plants, it was found as a pest on soybeans within 1 year of infestation. Because prior research suggests Ishikawaella confers the pest status—that is, the ability to thrive on soybeans—in some Megacopta species, we performed a genomic study on Ishikawaella from US. Megacopta cribraria populations to understand the role of the symbiont in driving host plant preferences. We included Ishikawaella samples collected in the first days of the invasion in 2009 and from 23 locations across the insects 2011 US range. The 0.75 Mb symbiont genome revealed only 47 fixed differences from the pest‐conferring Ishikawaella in Japan, with only one amino acid change in a nutrition‐provisioning gene. This similarity, along with a lack of fixed substitutions in the US symbiont population, indicates that Ishikawella likely arrived in the US capable of being a soybean pest. Analyses of allele frequency changes between 2009 and 2011 uncover signatures of both positive and negative selection and suggest that symbionts on soybeans and kudzu experience differential selection for genes related to nutrient provisioning. Our data reveal the evolutionary trajectory of an important insect‐bacteria symbiosis in the early stages of an invasion, highlighting the role microbial symbionts may play in the spread of invasive species.


Mbio | 2014

Differential Genome Evolution Between Companion Symbionts in an Insect-Bacterial Symbiosis

Gordon M. Bennett; John P. McCutcheon; Bradon R. MacDonald; Dwight Romanovicz; Nancy A. Moran

ABSTRACT Obligate symbioses with bacteria allow insects to feed on otherwise unsuitable diets. Some symbionts have extremely reduced genomes and have lost many genes considered to be essential in other bacteria. To understand how symbiont genome degeneration proceeds, we compared the genomes of symbionts in two leafhopper species, Homalodisca vitripennis (glassy-winged sharpshooter [GWSS]) and Graphocephala atropunctata (blue-green sharpshooter [BGSS]) (Hemiptera: Cicadellidae). Each host species is associated with the anciently acquired “Candidatus Sulcia muelleri” (Bacteroidetes) and the more recently acquired “Candidatus Baumannia cicadellinicola” (Gammaproteobacteria). BGSS “Ca. Baumannia” retains 89 genes that are absent from GWSS “Ca. Baumannia”; these underlie central cellular functions, including cell envelope biogenesis, cellular replication, and stress response. In contrast, “Ca. Sulcia” strains differ by only a few genes. Although GWSS “Ca. Baumannia” cells are spherical or pleomorphic (a convergent trait of obligate symbionts), electron microscopy reveals that BGSS “Ca. Baumannia” maintains a rod shape, possibly due to its retention of genes involved in cell envelope biogenesis and integrity. Phylogenomic results suggest that “Ca. Baumannia” is derived from the clade consisting of Sodalis and relatives, a group that has evolved symbiotic associations with numerous insect hosts. Finally, the rates of synonymous and nonsynonymous substitutions are higher in “Ca. Baumannia” than in “Ca. Sulcia,” which may be due to a lower mutation rate in the latter. Taken together, our results suggest that the two “Ca. Baumannia” genomes represent different stages of genome reduction in which many essential functions are being lost and likely compensated by hosts. “Ca. Sulcia” exhibits much greater genome stability and slower sequence evolution, although the mechanisms underlying these differences are poorly understood. IMPORTANCE In obligate animal-bacterial symbioses, bacteria experience extreme patterns of genome evolution, including massive gene loss and rapid evolution. However, little is known about this process, particularly in systems with complementary bacterial partners. To understand whether genome evolution impacts symbiont types equally and whether lineages follow the same evolutionary path, we sequenced the genomes of two coresident symbiotic bacteria from a plant sap-feeding insect and compared them to the symbionts from a related host species. We found that the older symbiont has a highly reduced genome with low rates of mutation and gene loss. In contrast, the younger symbiont has a larger genome that exhibits higher mutation rates and varies dramatically in the retention of genes related to cell wall biogenesis, cellular replication, and stress response. We conclude that while symbiotic bacteria evolve toward tiny genomes, this process is shaped by different selection intensities that may reflect the different ages and metabolic roles of symbiont types. In obligate animal-bacterial symbioses, bacteria experience extreme patterns of genome evolution, including massive gene loss and rapid evolution. However, little is known about this process, particularly in systems with complementary bacterial partners. To understand whether genome evolution impacts symbiont types equally and whether lineages follow the same evolutionary path, we sequenced the genomes of two coresident symbiotic bacteria from a plant sap-feeding insect and compared them to the symbionts from a related host species. We found that the older symbiont has a highly reduced genome with low rates of mutation and gene loss. In contrast, the younger symbiont has a larger genome that exhibits higher mutation rates and varies dramatically in the retention of genes related to cell wall biogenesis, cellular replication, and stress response. We conclude that while symbiotic bacteria evolve toward tiny genomes, this process is shaped by different selection intensities that may reflect the different ages and metabolic roles of symbiont types.

Collaboration


Dive into the John P. McCutcheon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Simon

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Nancy A. Moran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Gordon M. Bennett

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Keeling

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradon R. McDonald

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge