Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. McDaid is active.

Publication


Featured researches published by John P. McDaid.


Journal of Experimental Medicine | 2003

Bruton's tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor alpha production.

Nicole J. Horwood; Tara Mahon; John P. McDaid; Jamie Campbell; Hiroyuki Mano; Fionula M. Brennan; David Webster; Brian M. J. Foxwell

Lipopolysaccharide (LPS), a product of Gram-negative bacteria, is potent mediator of tumor necrosis factor (TNF)α production by myeloid/macrophage cells. Inhibitors capable of blocking the signaling events that result in TNFα production could provide useful therapeutics for treating septic shock and other inflammatory diseases. Broad spectrum tyrosine inhibitors are known to inhibit TNFα production, however, no particular family of tyrosine kinases has been shown to be essential for this process. Here we show that the Brutons tyrosine kinase (Btk)-deficient mononuclear cells from X-linked agammaglobulinemia patients have impaired LPS-induced TNFα production and that LPS rapidly induces Btk kinase activity in normal monocytes. In addition, adenoviral overexpression of Btk in normal human monocytes enhanced TNFα production. We examined the role of Btk in TNFα production using luciferase reporter adenoviral constructs and have established that overexpression of Btk results in the stabilization of TNFα mRNA via the 3′ untranslated region. Stimulation with LPS also induced the activation of related tyrosine kinase, Tec, suggesting that the Tec family kinases are important components for LPS-induced TNFα production. This study provides the first clear evidence that tyrosine kinases of the Tec family, in particular Btk, are key elements of LPS-induced TNFα production and consequently may provide valuable therapeutic targets for intervention in inflammatory conditions.


Journal of Immunology | 2006

Bruton’s Tyrosine Kinase Is Required for TLR2 and TLR4-Induced TNF, but Not IL-6, Production

Nicole J. Horwood; Theresa H. Page; John P. McDaid; Christine D. Palmer; Jamie Campbell; Tara Mahon; Fionula M. Brennan; David Webster; Brian M. J. Foxwell

Bruton’s tyrosine kinase (Btk), the gene mutated in the human immunodeficiency X-linked agammaglobulinemia, is activated by LPS and is required for LPS-induced TNF production. In this study, we have investigated the role of Btk both in signaling via another TLR (TLR2) and in the production of other proinflammatory cytokines such as IL-1β, IL-6, and IL-8. Our data show that in X-linked agammaglobulinemia PBMCs, stimulation with TLR4 (LPS) or TLR2 (N-palmitoyl-S-[2, 3-bis(palmitoyloxy)-(2R)-propyl]-(R)-cysteine) ligands produces significantly less TNF and IL-1β than in normal controls. In contrast, a lack of Btk has no impact on the production of IL-6, IL-8, or the anti-inflammatory cytokine, IL-10. Our previous data suggested that Btk lies within a p38-dependent pathway that stabilizes TNF mRNA. Accordingly, TaqMan quantitative PCR analysis of actinomycin D time courses presented in this work shows that overexpression of Btk is able to stabilize TNF, but not IL-6 mRNA. Furthermore, using the p38 inhibitor SB203580, we show that the TLR4-induced production of TNF, but not IL-6, requires the activity of p38 MAPK. These data provide evidence for a common requirement for Btk in TLR2- and TLR4-mediated induction of two important proinflammatory cytokines, TNF and IL-1β, and reveal important differences in the TLR-mediated signals required for the production of IL-6, IL-8, and IL-10.


Journal of The American Society of Nephrology | 2009

P2X7 Deficiency Attenuates Renal Injury in Experimental Glomerulonephritis

Simon Rj Taylor; Clare M. Turner; James I. Elliott; John P. McDaid; Reiko Hewitt; Jennifer A. Smith; Matthew C. Pickering; Darren L. Whitehouse; H. Terence Cook; Geoffrey Burnstock; Charles D. Pusey; Robert J. Unwin; Frederick W.K. Tam

The P2X7 receptor is a ligand-gated cation channel that is normally expressed by a variety of immune cells, including macrophages and lymphocytes. Because it leads to membrane blebbing, release of IL-1beta, and cell death by apoptosis or necrosis, it is a potential therapeutic target for a variety of inflammatory diseases. Although the P2X7 receptor is usually not detectable in normal renal tissue, we previously reported increased expression of both mRNA and protein in mesangial cells and macrophages infiltrating the glomeruli in animal models of antibody-mediated glomerulonephritis. In this study, we used P2X7-knockout mice in the same experimental model of glomerulonephritis and found that P2X7 deficiency was significantly renoprotective compared with wild-type controls, evidenced by better renal function, a striking reduction in proteinuria, and decreased histologic glomerular injury. In addition, the selective P2X7 antagonist A-438079 prevented the development of antibody-mediated glomerulonephritis in rats. These results support a proinflammatory role for P2X7 in immune-mediated renal injury and suggest that the P2X7 receptor is a potential therapeutic target.


Journal of The American Society of Nephrology | 2010

A Spleen Tyrosine Kinase Inhibitor Reduces the Severity of Established Glomerulonephritis

Jennifer A. Smith; John P. McDaid; Gurjeet Bhangal; Ratana Chawanasuntorapoj; Esteban S. Masuda; H. Terence Cook; Charles D. Pusey; Frederick W.K. Tam

Antibody-mediated glomerulonephritis, including that resulting from immune complexes, is an important cause of renal failure and is in need of more specific and effective treatment. Binding of antibody or immune complexes to Fc receptors activates intracellular signal transduction pathways, including spleen tyrosine kinase (Syk), leading to the production of inflammatory cytokines. We examined the effect of R788 (fostamatinib disodium), an oral prodrug of the selective Syk inhibitor R406, in nephrotoxic nephritis in Wistar-Kyoto rats. Treatment with R788 reduced proteinuria, tissue injury, glomerular macrophage and CD8+ cell numbers, and renal monocyte chemoattractant protein-1 (MCP-1) and IL-1beta, even when we started treatment after the onset of glomerulonephritis. When we administered R788 from days 4 to 10, glomerular crescents reduced by 100% (P < 0.01) compared with the vehicle group. When we administered R788 treatment from days 7 to 14, established glomerular crescents reversed (reduced by 21%, P < 0.001), and renal function was better than the vehicle group (P < 0.001). In vitro, R406 downregulated MCP-1 production from mesangial cells and macrophages stimulated with aggregated IgG. These results suggest that Syk is an important therapeutic target for the treatment of glomerulonephritis.


Journal of The American Society of Nephrology | 2007

Inhibition of p38 mitogen-activated protein kinase is effective in the treatment of experimental crescentic glomerulonephritis and suppresses monocyte chemoattractant protein-1 but not IL-1beta or IL-6.

Abdulmunem Sheryanna; Gurjeet Bhangal; John P. McDaid; Jennifer A. Smith; Anthony Manning; Brian M. J. Foxwell; Marc Feldmann; H. Terence Cook; Charles D. Pusey; Frederick W.K. Tam

Activation of p38 mitogen-activated protein kinase (MAPK) is known to be important in cytokine production and cell survival in inflammation. This study examined the effect of inhibiting p38 MAPK after onset of renal injury in an experimental model of crescentic glomerulonephritis. Furthermore, this study investigated whether p38 MAPK inhibition would cause widespread suppression of the cytokine network in vivo or uncontrolled apoptosis. In the in vivo studies, daily treatment with a p38 MAPKalpha/beta inhibitor was started 1 h (early treatment study) or 4 d (late treatment study) after induction of nephrotoxic nephritis in Wistar Kyoto rats. The treated rats remained healthy with normal weight gain during the study. Both early and late treatment with p38 MAPK inhibitor reduced renal monocyte chemoattractant protein-1 (MCP-1) levels, the number of glomerular macrophages, the severity of tissue injury, and proteinuria compared with the vehicle group. Unexpected, treatment with p38 MAPK inhibitor did not suppress renal levels of IL-1beta or IL-6. In the in vitro study, the p38 MAPKalpha/beta inhibitor reduced production of MCP-1 and IL-6 by TNF-alpha-or IL-1beta-stimulated mesangial cells without any effect on cell viability or apoptosis. In conclusion, p38 MAPK inhibition is effective in reducing the severity of crescentic glomerulonephritis even when treatment is started after onset of disease. The therapeutic effect is associated with selective suppression of MCP-1, without widespread suppression of cytokine production or increased apoptosis. Therefore, p38 MAPK therapeutic blockade is a promising strategy in the treatment of antibody-mediated glomerulonephritis.


American Journal of Pathology | 2009

Pkd2 Dosage Influences Cellular Repair Responses following Ischemia-Reperfusion Injury

Sony Prasad; John P. McDaid; Frederick Wai Keung Tam; John L. Haylor; Albert Chee Meng Ong

Autosomal dominant polycystic kidney disease (ADPKD) results from mutations in either PKD1 or PKD2 and accounts for 10% of all patients on renal replacement therapy. The kidney disease phenotype is primarily characterized by cyst formation, but there are also prominent interstitial changes (inflammation, apoptosis, proliferation, and fibrosis). Using a model of unilateral ischemia-reperfusion injury, we tested the hypothesis that Pkd2 heterozygous kidneys are more sensitive to injury and that this could lead to interstitial inflammation and fibrosis. Baseline tubular proliferation in heterozygous kidneys was twofold higher than in wild-type kidneys. The magnitude and duration of tubular and interstitial proliferative responses was consistently greater in injured heterozygous compared with wild-type kidneys at all time points. Conversely, tubular p21 expression in heterozygotes was lower at baseline and following injury at all time points. Significantly more neutrophils and macrophages were detected in injured Pkd2 heterozygous kidneys at 2 days, correlating with increased expression of the cytokines interleukin (IL)-1beta and keratinocyte-derived chemokine and resulting in interstitial fibrosis at 28 days. We conclude that Pkd2 dosage influences both susceptibility and nature of the repair responses following injury. Polycystin-2 is therefore likely to play multiple roles in regulating tubular cell viability, repair, and remodeling in the mature kidney.


Journal of Immunology | 2012

Spleen Tyrosine Kinase Is Important in the Production of Proinflammatory Cytokines and Cell Proliferation in Human Mesangial Cells following Stimulation with IgA1 Isolated from IgA Nephropathy Patients

Min Jeong Kim; John P. McDaid; Stephen P. McAdoo; Jonathan Barratt; Karen Molyneux; Esteban S. Masuda; Charles D. Pusey; Frederick W.K. Tam

IgA immune complexes are capable of inducing human mesangial cell (HMC) activation, resulting in release of proinflammatory and profibrogenic mediators. The subsequent inflammation, cellular proliferation, and synthesis of extracellular matrix lead to the progression of IgA nephropathy (IgAN). Spleen tyrosine kinase (SYK) is an intracellular protein tyrosine kinase involved in cell signaling downstream of immunoreceptors. In this study, we determined whether SYK is involved in the downstream signaling of IgA1 stimulation in HMC, leading to production of proinflammatory cytokines/chemokines and cell proliferation. Incubation of HMC with IgA1 purified from IgAN patients significantly increased the synthesis of MCP-1 in a dose-dependent manner. There was also significantly increased production of IL-6, IL-8, IFN-γ–inducible protein-10, RANTES, and platelet-derived growth factor-BB. Stimulation of HMC with heat-aggregated IgA1 purified from IgAN patients induced significantly increased HMC proliferation. Both pharmacological inhibition of SYK and knockdown of SYK by small interfering RNA significantly reduced the synthesis of these mediators and inhibited HMC proliferation. Moreover, positive immunostaining for total and phospho-SYK in glomeruli of kidney biopsies from IgAN patients strongly suggests the involvement of SYK in the pathogenesis of IgAN. To our knowledge, we demonstrate, for the first time, the involvement of SYK in the downstream signaling of IgA1 stimulation in HMC and in the pathogenesis of IgAN. Hence, SYK represents a potential therapeutic target for IgAN.


Journal of The American Society of Nephrology | 2014

Spleen Tyrosine Kinase Inhibition Attenuates Autoantibody Production and Reverses Experimental Autoimmune GN

Stephen P. McAdoo; J. Reynolds; Gurjeet Bhangal; Jennifer A. Smith; John P. McDaid; Anisha Tanna; W. D. Jackson; Esteban S. Masuda; H. T. Cook; Charles D. Pusey; Frederick W.K. Tam

Spleen tyrosine kinase (SYK) has an important role in immunoreceptor signaling, and SYK inhibition has accordingly attenuated immune-mediated injury in several in vivo models. However, the effect of SYK inhibition on autoantibody production remains unclear, and SYK inhibition has not been studied in an autoimmune model of renal disease. We, therefore, studied the effect of SYK inhibition in experimental autoimmune GN, a rodent model of antiglomerular basement membrane disease. We show glomerular SYK expression and activation by immunohistochemistry in both experimental and clinical disease, and we show that treatment with fostamatinib, a small molecule kinase inhibitor selective for SYK, completely prevents the induction of experimental autoimmune GN. In established experimental disease, introduction of fostamatinib treatment led to cessation of autoantibody production, reversal of renal injury, preservation of biochemical renal function, and complete protection from lung hemorrhage. B cell ELISpot and flow cytometric analysis suggest that short-term fostamatinib treatment inhibits the generation and activity of antigen-specific B cells without affecting overall B-cell survival. Additionally, fostamatinib inhibited proinflammatory cytokine production by nephritic glomeruli ex vivo and cultured bone marrow-derived macrophages in vitro, suggesting additional therapeutic effects independent of effects on autoantibody production that are likely related to inhibited Fc receptor signaling within macrophages in diseased glomeruli. Given these encouraging results in an in vivo model that is highly applicable to human disease, we believe clinical studies targeting SYK in GN are now warranted.


Journal of The American Society of Nephrology | 2007

Genes Expressed by Both Mesangial Cells and Bone Marrow–Derived Cells Underlie Genetic Susceptibility to Crescentic Glomerulonephritis in the Rat

Jennifer A. Smith; Lai Pc; Jacques Behmoaras; Roufosse C; Gurjeet Bhangal; John P. McDaid; Timothy J. Aitman; Frederick W.K. Tam; Charles D. Pusey; H.T. Cook

The Wistar-Kyoto (WKY) rat shows marked susceptibility to crescentic glomerulonephritis. In the model of nephrotoxic nephritis (NTN) that is induced by a small dose of nephrotoxic globulin, WKY rats developed crescents in 80 +/- 2% of glomeruli at day 10, whereas no crescents were seen in Lewis rats. This was associated with marked increase in monocyte chemoattractant protein-1 synthesis in WKY glomeruli. It was posited whether susceptibility depended on circulating cells or intrinsic renal cells. Bone marrow (BM) isografts from WKY to WKY or Lewis to Lewis did not affect susceptibility to NTN. When BM was transferred from WKY to Lewis rats, crescents developed in 35 +/- 9% of glomeruli 10 d after induction of NTN, indicating that susceptibility could be transferred by BM cells. However, crescents were also seen in WKY rats that were given Lewis marrow. For assessment of the contribution of intrinsic renal cells, kidneys from WKY or Lewis rats were transplanted into F1 animals. In NTN, the ratio of crescents in the transplanted kidney to the native kidney was significantly higher for WKY-to-F1 than for Lewis-to-F1 transplants, demonstrating that the kidney itself also influences susceptibility. Mesangial cell responses were then examined in the two strains. Mesangial cells that were derived from WKY rats synthesized significantly more monocyte chemoattractant protein-1 basally and after stimulation with heat-aggregated rabbit IgG or TNF-alpha. These results show that susceptibility to NTN in the WKY rat depends on both circulating and intrinsic renal cells and that there are genetic differences between the strains in mesangial responses to inflammatory stimuli.


Journal of Immunology | 2015

Selective Targeting of a Disease-Related Conformational Isoform of Macrophage Migration Inhibitory Factor Ameliorates Inflammatory Conditions

Michael Thiele; Randolf Kerschbaumer; Frederick W.K. Tam; Dirk Völkel; Patrice Douillard; Alexander Schinagl; Harald Kühnel; Jennifer J. Smith; John P. McDaid; Gurjeet Bhangal; Mei-Ching Yu; Charles D. Pusey; H. Terence Cook; Josef Kovarik; Erica Magelky; Atul K. Bhan; Manfred Rieger; Geert C. Mudde; Hartmut J. Ehrlich; Bernd Jilma; Herbert Tilg; Alexander R. Moschen; Cox Terhorst; Friedrich Scheiflinger

Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine and counterregulator of glucocorticoids, is a potential therapeutic target. MIF is markedly different from other cytokines because it is constitutively expressed, stored in the cytoplasm, and present in the circulation of healthy subjects. Thus, the concept of targeting MIF for therapeutic intervention is challenging because of the need to neutralize a ubiquitous protein. In this article, we report that MIF occurs in two redox-dependent conformational isoforms. We show that one of the two isoforms of MIF, that is, oxidized MIF (oxMIF), is specifically recognized by three mAbs directed against MIF. Surprisingly, oxMIF is selectively expressed in the plasma and on the cell surface of immune cells of patients with different inflammatory diseases. In patients with acute infections or chronic inflammation, oxMIF expression correlated with inflammatory flare-ups. In addition, anti-oxMIF mAbs alleviated disease severity in mouse models of acute and chronic enterocolitis and improved, in synergy with glucocorticoids, renal function in a rat model of crescentic glomerulonephritis. We conclude that oxMIF represents the disease-related isoform of MIF; oxMIF is therefore a new diagnostic marker for inflammation and a relevant target for anti-inflammatory therapy.

Collaboration


Dive into the John P. McDaid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anisha Tanna

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge