John P. Murad
Western University of Health Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John P. Murad.
Biochemical and Biophysical Research Communications | 2012
Enma V. P. Espinosa; John P. Murad; Harold J. Ting; Fadi T. Khasawneh
Although changes in the intracellular levels of calcium (Ca(2+)) are a central step in platelet activation, the underlying mechanism of Ca(2+) entry is still unclear. Previous studies have demonstrated that TRPC6, a member of the canonical transient receptor potential channel (TRPC) family is expressed in platelets in a significant amount, and is predominantly found on the plasma membrane. Based on these considerations, we hypothesized that TRPC6 plays a critical role in platelet function. To characterize the role of TRPC6 in platelet function in vivo, we employed a genetic approach, subjecting TRPC6 knockout mice to the tail bleeding time test and a carotid artery injury thrombosis model. We found that TRPC6-deficient animals displayed a prolonged bleeding time, and an increased time for occlusion of the injured carotid artery, compared to their wild-type littermates. Taken together, our data demonstrate for the first time, that TRPC6 deletion in mice results in defects in hemostasis and protection against thrombogenesis, suggesting a vital role in platelet function. Furthermore, TRPC6 may define a new therapeutic target for managing multiple thrombosis-based disorders.
Journal of Cardiovascular Pharmacology and Therapeutics | 2012
Harold J. Ting; John P. Murad; Enma V. P. Espinosa; Fadi T. Khasawneh
While blood platelets express several G-protein-coupled receptors (GPCRs) that play pivotal roles in their activation, several diseases, for example thrombotic disorders, may develop if these receptors are inappropriately activated. Thus, these receptors have been the subject of investigations to design therapeutic interventions for managing multiple thrombosis-based disease states. One such GPCR, the thromboxane A2 receptor (TPR), remains resistant to such interventions. The present review provides a critical examination of the binding, structural biology, and signaling of TPRs. The review also provides a rationale for using principles of “drug rediscovery” as an alternative/viable approach for the therapeutic targeting of TPRs. To this end, it is noteworthy that many US Food and Drug Administration (FDA)–approved drugs have been found to selectively (and nonselectively) block TPR-mediated functional responses, for example platelet aggregation, as described in this review. Therefore, while none of the antagonists, thus far developed for targeting TPRs, have made it into clinical use, this peculiar receptor can be antagonized by a large number of drugs used for indications unrelated to thrombosis.
Thrombosis | 2012
Enma V. P. Espinosa; John P. Murad; Fadi T. Khasawneh
Antiplatelet therapy has been documented to reduce risks of cardiovascular disease after acute myocardial infarction, coronary artery bypass graft, and in chronic atrial fibrillation patients, amongst other risk factors. Conventional management of thrombosis-based disorders includes the use of heparin, oral anticoagulants, and the preferred antiplatelet agent aspirin. Interestingly, aspirin was not intended to be used as an antiplatelet agent; rather, after being repurposed, it has become one of the most widely prescribed antithrombotic drugs. To this end, there have been several milestones in the development of antiplatelet agents in the last few decades, such as adenosine diphosphate receptor inhibitors, phosphodiesterase inhibitors, and GPIIb/IIIa inhibitors. However, given some of the limitations of these therapies, aspirin continues to play a major role in the management of thrombotic and cardiovascular disorders and is expected to do so for years to come.
Current Molecular Medicine | 2012
John P. Murad; Olivia A. Lin; E. V. Paez Espinosa; Fadi T. Khasawneh
The premise of targeted therapy was born from an intimate understanding of the unique biological pathways and endpoints which are implicated in the development of different disease states and conditions. In addition, the identification of the most appropriate drugs to use for targeted drug therapy has aided in growing interest of the pharmaceutical industry to allocate more resources to monoclonal antibody (mAb) therapeutics. This being the case, it is important to understand antibody based therapeutics, some of the currently Food and Drug Administration (FDA)-approved mAbs in different disease states, as well as the future direction of mAb therapies. In this article, we will provide a critical overview, and discuss a selection of antibody based therapeutics, including their bioengineered structural and functional elements. Furthermore, a segment of the currently FDA-approved mAb antibody therapies, those in research, or in investigation for disease states and conditions ranging from autoimmune disease, inflammatory response, immunosuppression, cancer, including antibody-drug conjugates, immunotherapy, and exciting prospects for antiplatelet and antithrombotic monoclonal antibody therapeutics will be reviewed. Finally, we will discuss our predictions and aspirations for the future directions of mAb-based therapeutic interventions.
Biochemical and Biophysical Research Communications | 2012
John P. Murad; Enma V. P. Espinosa; Harold J. Ting; Diane McClure; Fadi T. Khasawneh
In efforts to define new targets for antithrombotic purposes, there is interest in utilizing antibodies targeting ligand binding domains of platelet receptors. To this end, we have recently shown that an antibody (designated C-EL2Ab), which targets the C-terminus of the 2nd extracellular loop (C-EL2) of the thromboxane A(2) receptor (TPR), selectively blocks TPR-mediated platelet aggregation, under both in vitro and ex vivo experimental conditions. In the current studies we sought to determine whether C-EL2Ab exhibits in vivo antithrombotic activity, by employing a carotid artery injury thrombosis model. It was found that mice treated with C-EL2Ab, exhibited a significant increase in time for occlusion, when compared to controls such as normal rabbit IgG, or an antibody which targets a region separate from the ligand binding site (i.e., EL1). We next examined the effect of C-EL2Ab on hemostasis, and found no increase in tail bleeding times in C-EL2Ab treated mice, compared to the aforementioned controls. Collectively, these results clearly demonstrate that C-EL2Ab has anti-platelet/anti-thrombotic effects, and is devoid of increased bleeding risk. Moreover, the identification of a functionally active TPR sequence should significantly aid molecular modeling study predictions for organic derivatives which possess in vivo activity.
Journal of Cardiovascular Pharmacology and Therapeutics | 2012
John P. Murad; Enma V. P. Espinosa; Harold J. Ting; Fadi T. Khasawneh
Objective: The purpose of this study is to investigate the potential in vivo antiplatelet and thromboprotective properties of the antihypertensive drug losartan in mice. Methods: Aggregometry studies were performed on platelets obtained from mice administered losartan for 5 days, via tail vein to examine the ex vivo effects (dose dependence) of this agent and to select an appropriate dose for the in vivo studies. Next, the tail bleeding time test and the time for occlusion in a carotid artery injury thrombosis model (ferric chloride) were also performed to assess the in vivo effects of losartan treatment. Results: These data indicate that the antihypertensive agent losartan exerts dose-dependent inhibition of the thromboxane receptor-mediated (U46619/agonist)-induced platelet aggregation (ex vivo), whereas it produced no detectable effects on aggregation triggered by adenosine diphosphate or the thrombin receptor activating peptide 4. Findings from the in vivo analysis revealed that tail bleeding time of losartan-treated mice was not different from vehicle-treated mice. On the other hand, in the carotid artery injury thrombosis model, it was found that the losartan-treated mice had significantly longer time for occlusion in comparison with those treated with vehicle control. Conclusions: These findings provide evidence that administration of the antihypertensive drug losartan into live mice produces thromboxane A2 receptor–specific antiplatelet effects. Furthermore, interestingly, this antiplatelet activity appears to translate into thromboprotective properties, without resulting in a bleeding phenotype. Consequently, aside from its potential use as an antithrombotic agent, losartan’s chemistry may provide a “blueprint” for designing or repurposing novel derivatives which may have the potential to serve as an antiplatelet and thromboprotective agents but are deprived of the usually concomitant bleeding adverse effects.
Biochemical Pharmacology | 2012
John P. Murad; Enma V. P. Espinosa; Harold J. Ting; Fadi T. Khasawneh
There is considerable interest in discovering novel antiplatelet approaches with an enhanced safety profile. To this end, in our efforts to define new targets for antithrombotic activity, we investigated the utility of antibodies which recognize the ligand binding domains of the platelet thromboxane A(2) receptor (TPR). We hypothesized that an antibody (abbreviated as C-EL2Ab), which interacts with the C-terminus of the second extracellular loop (C-EL2; i.e., ligand binding domain) of TPR exhibits antagonistic activity. Our findings demonstrate that C-EL2Ab did indeed inhibit TPR-mediated platelet aggregation. However, it was devoid of any apparent effects on aggregation triggered by ADP or the thrombin receptor activating peptides 1 or 4. Furthermore, results from radiolabeled ligand binding studies indicate that C-EL2Ab competitively displaced the classical TPR antagonist [(3)H]SQ29,548 from its binding sites. On the other hand, control experiments indicated that normal rabbit IgG and an antibody which targets a TPR domain separate from those involved in ligand recognition, failed to inhibit aggregation in response to TPR activation. Collectively, these findings demonstrate that C-EL2 of TPR plays a critical role in platelet activation, and establish C-EL2Ab as a function blocking antibody. Furthermore, our data suggest a potential for the therapeutic application of C-EL2Ab, which may serve either as an alternative to, or a complement for current treatments. Finally, the identification of a functionally active TPR sequence should aid molecular modeling study predictions for organic derivatives which possess in vivo activity.
Archive | 2011
Vishwanath Venketaraman; Devin Morris; Clare Donohou; Andrea Sipin; Steven Kung; Hyoung Oh; Mesharee Franklin; John P. Murad; Fadi T. Khasawneh; Beatrice Saviola; Timothy Guilford; Clare Donahue
Human immunodeficiency virus (HIV) is the cause of acquired immunodeficiency syndrome (AIDS). Blood monocytes and resident macrophages are important in vivo cell targets for HIV infection and their role in AIDS pathogenesis are well documented. These cells of innate immune defenses usually survive HIV infection, serve as a major virus reservoir, and function as immunoregulatory cells through secretion of several pro-inflammatory cytokines and chemokines in response to HIV infection, thereby recruiting and activating new target cells for the virus, including CD4+ T cells. This review describes the alterations in the synthesis of host cytokines and chemokines following HIV infection thereby favoring successful survival of the virus inside the host and enhancing the susceptibility of the host to opportunistic infections.
The FASEB Journal | 2011
John P. Murad; Harold J. Ting; Fadi T. Khasawneh
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Fadi T. Khasawneh; Enma V. P. Espinosa; Olivia A. Lin; John P. Murad