Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Priestle is active.

Publication


Featured researches published by John P. Priestle.


Journal of Biological Chemistry | 1997

Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone.

Peer R. E. Mittl; S. Di Marco; Joseph F. Krebs; Xu Bai; Donald S. Karanewsky; John P. Priestle; Kevin J. Tomaselli; Markus Grütter

The cysteine protease CPP32 has been expressed in a soluble form in Escherichia coli and purified to >95% purity. The three-dimensional structure of human CPP32 in complex with the irreversible tetrapeptide inhibitor acetyl-Asp-Val-Ala-Asp fluoromethyl ketone was determined by x-ray crystallography at a resolution of 2.3 Å. The asymmetric unit contains a (p17/p12)2 tetramer, in agreement with the tetrameric structure of the protein in solution as determined by dynamic light scattering and size exclusion chromatography. The overall topology of CPP32 is very similar to that of interleukin-1β-converting enzyme (ICE); however, differences exist at the N terminus of the p17 subunit, where the first helix found in ICE is missing in CPP32. A deletion/insertion pattern is responsible for the striking differences observed in the loops around the active site. In addition, the P1 carbonyl of the ketone inhibitor is pointing into the oxyanion hole and forms a hydrogen bond with the peptidic nitrogen of Gly-122, resulting in a different state compared with the tetrahedral intermediate observed in the structure of ICE and CPP32 in complex with an aldehyde inhibitor. The topology of the interface formed by the two p17/p12 heterodimers of CPP32 is different from that of ICE. This results in different orientations of CPP32 heterodimers compared with ICE heterodimers, which could affect substrate recognition. This structural information will be invaluable for the design of small synthetic inhibitors of CPP32 as well as for the design of CPP32 mutants.


Structure | 1999

The 1.2 A crystal structure of hirustasin reveals the intrinsic flexibility of a family of highly disulphide-bridged inhibitors.

Isabel Usón; George M. Sheldrick; Eric de La Fortelle; Gérard Bricogne; Stefania Di Marco; John P. Priestle; Markus G. Grütter; Peer R. E. Mittl

BACKGROUND Leech-derived inhibitors have a prominent role in the development of new antithrombotic drugs, because some of them are able to block the blood coagulation cascade. Hirustasin, a serine protease inhibitor from the leech Hirudo medicinalis, binds specifically to tissue kallikrein and possesses structural similarity with antistasin, a potent factor Xa inhibitor from Haementeria officinalis. Although the 2.4 A structure of the hirustasin-kallikrein complex is known, classical methods such as molecular replacement were not successful in solving the structure of free hirustasin. RESULTS Ab initio real/reciprocal space iteration has been used to solve the structure of free hirustasin using either 1.4 A room temperature data or 1.2 A low temperature diffraction data. The structure was also solved independently from a single pseudo-symmetric gold derivative using maximum likelihood methods. A comparison of the free and complexed structures reveals that binding to kallikrein causes a hinge-bending motion between the two hirustasin subdomains. This movement is accompanied by the isomerisation of a cis proline to the trans conformation and a movement of the P3, P4 and P5 residues so that they can interact with the cognate protease. CONCLUSIONS The inhibitors from this protein family are fairly flexible despite being highly cross-linked by disulphide bridges. This intrinsic flexibility is necessary to adopt a conformation that is recognised by the protease and to achieve an optimal fit, such observations illustrate the pitfalls of designing inhibitors based on static lock-and-key models. This work illustrates the potential of new methods of structure solution that require less or even no prior phase information.


Journal of Molecular Biology | 1991

Refined crystal structures of subtilisin Novo in complex with wild-type and two mutant eglins: Comparison with other serine proteinase inhibitor complexes

Dirk Heinz; John P. Priestle; Joseph Rahuel; K.S. Wilson; Markus Grütter

The crystal structures of the complexes formed between subtilisin Novo and three inhibitors, eglin c, Arg45-eglin c and Lys53-eglin c have been determined using molecular replacement and difference Fourier techniques and refined at 2.4 A, 2.1 A, and 2.4 A resolution, respectively. The mutants Arg45-eglin c and Lys53-eglin c were constructed by site-directed mutagenesis in order to investigate the inhibitory specificity and stability of eglin c. Arg45-eglin became a potent trypsin inhibitor, in contrast to native eglin, which is an elastase inhibitor. This specificity change was rationalized by comparing the structures of Arg45-eglin and basic pancreatic trypsin inhibitor and their interactions with trypsin. The residue Arg53, which participates in a complex network of hydrogen bonds formed between the core and the binding loop of eglin c, was replaced with the shorter basic amino acid lysine in the mutant Lys53-eglin. Two hydrogen bonds with Thr44, located in the binding loop, can no longer be formed but are partially restored by a water molecule bound in the vicinity of Lys53. Eglin c in complexes with both subtilisin Novo and subtilisin Carlsberg was crystallized in two different space groups. Comparison of the complexes showed a rigid body rotation for the eglin c core of 11.5 degrees with respect to the enzyme, probably caused by different intermolecular contacts in both crystal forms.


Journal of Computer-aided Molecular Design | 1995

Modelling study of protein kinase inhibitors: Binding mode of staurosporine and origin of the selectivity of CGP 52411

Pascal Furet; Giorgio Caravatti; Nicholas B. Lydon; John P. Priestle; Janusz M. Sowadski; Uwe Trinks; Peter Traxler

SummaryA model for the binding mode of the potent protein kinase inhibitor staurosporine is proposed. Using the information provided by the crystal structure of the cyclic-AMP-dependent protein kinase, it is suggested that staurosporine, despite a seemingly unrelated chemical structure, exploits the same key hydrogen-bond interactions as ATP, the cofactor of the protein kinases, in its binding mode. The structure-activity relationships of the inhibitor and a docking analysis give strong support to this protein tyrosine kinase is rationalized on the basis of the model. It is proposed that this selectivity originates in the occupancy, by one of the anilino moieties of the inhibitor, of the region of the enzyme cleft that normally binds the ribose ring of ATP, which appears to possess a marked lipophilic character in this kinase.


Structure | 1997

A new structural class of serine protease inhibitors revealed by the structure of the hirustasin–kallikrein complex

Peer R. E. Mittl; Stefania Di Marco; Gabriele Fendrich; Gabriele Pohlig; Jutta Heim; Christian P. Sommerhoff; Hans Fritz; John P. Priestle; Markus Grütter

BACKGROUND Hirustasin belongs to a class of serine protease inhibitors characterized by a well conserved pattern of cysteine residues. Unlike the closely related inhibitors, antistasin/ghilanten and guamerin, which are selective for coagulation factor Xa or neutrophil elastase, hirustasin binds specifically to tissue kallikrein. The conservation of the pattern of cysteine residues and the significant sequence homology suggest that these related inhibitors possess a similar three-dimensional structure to hirustasin. RESULTS The crystal structure of the complex between tissue kallikrein and hirustasin was analyzed at 2.4 resolution. Hirustasin folds into a brick-like structure that is dominated by five disulfide bridges and is sparse in secondary structural elements. The cysteine residues are connected in an abab cdecde pattern that causes the polypeptide chain to fold into two similar motifs. As a hydrophobic core is absent from hirustasin the disulfide bridges maintain the tertiary structure and present the primary binding loop to the active site of the protease. The general structural topography and disulfide connectivity of hirustasin has not previously been described. CONCLUSIONS The crystal structure of the kallikrein-hirustasin complex reveals that hirustasin differs from other serine protease inhibitors in its conformation and its disulfide bond connectivity, making it the prototype for a new class of inhibitor. The disulfide pattern shows that the structure consists of two domains, but only the C-terminal domain interacts with the protease. The disulfide pattern of the N-terminal domain is related to the pattern found in other proteins. Kallikrein recognizes hirustasin by the formation of an antiparallel beta sheet between the protease and the inhibitor. The P1 arginine binds in a deep negatively charged pocket of the enzyme. An additional pocket at the periphery of the active site accommodates the sidechain of the P4 valine.


Acta Crystallographica Section D-biological Crystallography | 2002

Computational analysis of crystallization trials.

Glen Spraggon; Scott A. Lesley; Andreas Kreusch; John P. Priestle

A system for the automatic categorization of the results of crystallization experiments generated by robotic screening is presented. Images from robotically generated crystallization screens are taken at preset time intervals and analyzed by the computer program Crystal Experiment Evaluation Program (CEEP). This program attempts to automatically categorize the individual crystal experiments into a number of simple classes ranging from clear drop to mountable crystal. The algorithm first selects features from the images via edge detection and texture analysis. Classification is achieved via a self-organizing neural net generated from a set of hand-classified images used as a training set. New images are then classified according to this neural net. It is demonstrated that incorporation of time-series information may enhance the accuracy of classification. Preliminary results from the screening of the proteome of Thermotoga maritima are presented showing the utility of the system.


Structure | 1995

Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor

John P. Priestle; A Fässler; J Rösel; M Tintelnot-Blomley; P Strop; Markus Grütter

BACKGROUND The human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS). Two subtypes of the virus, HIV-1 and HIV-2, have been characterized. The protease enzymes from these two subtypes, which are aspartic acid proteases and have been found to be essential for maturation of the infectious particle, share about 50% sequence identity. Differences in substrate and inhibitor binding between these enzymes have been previously reported. RESULTS We report the X-ray crystal structures of both HIV-1 and HIV-2 proteases each in complex with the pseudosymmetric inhibitor, CGP 53820, to 2.2 A and 2.3 A, respectively. In both structures, the entire enzyme and inhibitor could be located. The structures confirmed earlier modeling studies. Differences between the CGP 53820 inhibitory binding constants for the two enzymes could be correlated with structural differences. CONCLUSIONS Minor sequence changes in subsites at the active site can explain some of the observed differences in substrate and inhibitor binding between the two enzymes. The information gained from this investigation may help in the design of equipotent HIV-1/HIV-2 protease inhibitors.


Structure | 1997

Structure of the complex of leech-derived tryptase inhibitor (LDTI) with trypsin and modeling of the LDTI–tryptase system

Stefania Di Marco; John P. Priestle

BACKGROUND Tryptase is a trypsin-like serine proteinase stored in the cytoplasmic granules of mast cells, which has been implicated in a number of mast cell related disorders such as asthma and rheumatoid arthritis. Unlike almost all other serine proteinases, tryptase is fully active in plasma and in the extracellular space, as there are no known natural inhibitors of tryptase in humans. Leech-derived tryptase inhibitor (LDTI), a protein of 46 amino acids, is the first molecule found to bind tightly to and specifically inhibit human tryptase in the nanomolar range. LDTI also inhibits trypsin and chymotrypsin with similar affinities. The structure of LDTI in complex with an inhibited proteinase could be used as a template for the development of low molecular weight tryptase inhibitors. RESULTS The crystal structure of the complex between trypsin and LDTI was solved at 2.0 A resolution and a model of the LDTI-tryptase complex was created, based on this X-ray structure. LDTI has a very similar fold to the third domain of the turkey ovomucoid inhibitor. LDTI interacts with trypsin almost exclusively through its binding loop (residues 3-10) and especially through the sidechain of the specificity residue Lys8. Our modeling studies indicate that these interactions are maintained in the LDTI-tryptase complex. CONCLUSIONS The insertion of nine residues after residue 174 in tryptase, relative to trypsin and chymotrypsin, prevents inhibition by other trypsin inhibitors and is certainly responsible for the higher specificity of tryptase relative to trypsin. In LDTI, the disulfide bond between residues 4 and 25 causes a sharp turn from the binding loop towards the N terminus, holding the N terminus away from the 174 loop of tryptase.


Proteins | 2006

Complementarity of hydrophobic properties in ATP-protein binding: A new criterion to rank docking solutions

Timothy V. Pyrkov; Yuri A. Kosinsky; Alexander S. Arseniev; John P. Priestle; Edgar Jacoby; Roman G. Efremov

ATP is an important substrate of numerous biochemical reactions in living cells. Molecular recognition of this ligand by proteins is very important for understanding enzymatic mechanisms. Considerable insight into the problem may be gained via molecular docking simulations. At the same time, standard docking protocols are often insufficient to predict correct conformations for protein–ATP complexes. Thus, in most cases the native‐like solutions can be found among the docking poses, but current scoring functions have only limited ability to discriminate them from false positives. To improve the selection of correct docking solutions obtained with the GOLD software, we developed a new ranking criterion specific for ATP–protein binding. The method is based on detailed analysis of the intermolecular interactions in 40 high‐resolution 3D structures of ATP–protein complexes (the training set). We found that the most important factors governing this recognition are hydrogen‐bonding, stacking between adenine and aromatic protein residues, and hydrophobic contacts between adenine and protein residues. To address the latter, we applied the formalism of 3D molecular hydrophobicity potential. The results obtained were used to construct an ATP‐oriented scoring criterion as a linear combination of the terms describing these intermolecular interactions. The criterion was then validated using the test set of 10 additional ATP–protein complexes. As compared with the standard scoring functions, the new ranking criterion significantly improved the selection of correct docking solutions in both sets and allowed considerable enrichment at the top of the list containing docking poses with correct solutions. Proteins 2007.


Journal of Structural Biology | 1991

The structure of murine interleukin-1 beta at 2.8 A resolution.

Jan van Oostrum; John P. Priestle; Markus Grütter; Albert Schmitz

The three-dimensional structure of recombinant murine interleukin-1 beta has been solved by X-ray crystallographic techniques to 2.8 A resolution and refined to a crystallographic R factor of 0.192. Although murine interleukin-1 beta crystallizes in the same space group as human interleukin-1 beta with almost identical unit cell dimensions, the packing of the molecules is quite different. The murine interleukin-1 beta structure was solved by molecular replacement using the refined structure of human interleukin-1 beta as trial structure, and found to be related to the human structure by a nearly perfect twofold rotation about the crystallographic y-axis and a 14 degrees rotation about the z-axis, with no translation. The folding of murine interleukin-1 beta is similar to that found for the human variant, consisting of 12 beta strands wrapped around a core of hydrophobic side chains in a tetrahedron-like fashion. Significant differences with respect to the human structure are seen at the N terminus and in 4 of the 11 loops connecting the 12 beta strands.

Collaboration


Dive into the John P. Priestle's collaboration.

Researchain Logo
Decentralizing Knowledge