Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Rapp is active.

Publication


Featured researches published by John P. Rapp.


Journal of Clinical Investigation | 1994

Genetic mapping of two new blood pressure quantitative trait loci in the rat by genotyping endothelin system genes.

Alan Y. Deng; H Dene; M Pravenec; John P. Rapp

The endothelin system, consisting of a series of potent vasoconstrictor peptides and their receptors, is potentially important in the control of blood pressure. We found that the gene coding for endothelin-2 (ET2), also known as vasoctive intestine peptide, cosegregated strongly with systolic blood pressure in a F2 population [F2(S x LEW)] derived from a cross of the Dahl salt-sensitive (S) rat and the Lewis (LEW/NCrlBR) (LEW) rat. The ET2 locus was assigned to rat chromosome 5. The testis-specific histone (HITH) locus also strongly cosegregated with blood pressure in the F2(S x LEW) population and was assigned to rat chromosome 17. Genetic maps of the regions containing the quantitative trait loci (QTL) for blood pressure on chromosomes 5 and 17 were constructed and the QTL were localized using the MAPMAKER/QTL program. The rat genes for endothelin-1, endothelin-3, and endothelin receptor A did not cosegregate with blood pressure in several F2 populations tested and were assigned to rat chromosomes 17, 3, and 19, respectively. Endothelin receptor B cosegregated weakly with blood pressure and was provisionally assigned to rat chromosome 15. We conclude that, in the rat, one new blood pressure QTL is located on chromosome 5 marked by the ET2 locus and another new QTL is located on chromosome 17 near the HITH locus.


Hypertension | 1995

Detection and Positional Cloning of Blood Pressure Quantitative Trait Loci: Is It Possible? Identifying the Genes for Genetic Hypertension

John P. Rapp; Alan Y. Deng

Identification of the quantitative trait loci that influence blood pressure and cause genetic hypertension is a major challenge. Several genetically hypertensive rat strains exist and can be used to locate by linkage analysis broad chromosomal regions containing blood pressure quantitative trait loci. Such broad chromosomal regions, and the narrower subregions, can be moved among strains (ie, production of congenic strains and congenic substrains) to identify small chromosomal regions containing the blood pressure quantitative trait loci. However, ultimate positional cloning of the quantitative trait loci presents a major difficulty because the genetic variants involved are likely to result in subtle changes in function rather than the blatant loss of function characteristic of all mendelian disease genes discovered so far by positional cloning.


Journal of Clinical Investigation | 1994

Mapping of a quantitative trait locus for blood pressure on rat chromosome 2.

Alan Y. Deng; H Dene; John P. Rapp

A genetic map for rat chromosome 2 that includes five candidate genes for blood pressure regulation was constructed in a region containing a quantitative trait locus (QTL) for blood pressure. Two F2 populations of male rats raised on high salt (8% NaCI) diet from weaning were studied: F2(WKY x S), derived from a cross of Dahl salt-sensitive rats (S) and Wistar-Kyoto rats (WKY); and F2(MNS x S), derived from a cross of S rats and Milan normotensive strain (MNS). In both populations a blood pressure QTL was localized between Na+,K(+)-ATPase alpha 1 isoform and calmodulin-dependent protein kinase II-delta loci. The LOD score for existence of this blood pressure QTL based on the combined populations (n = 330) was 5.66 and accounted for 9.2% of the total variance and 26% of the genetic variance.


Journal of Clinical Investigation | 1998

Construction of a double congenic strain to prove an epistatic interaction on blood pressure between rat chromosomes 2 and 10.

John P. Rapp; Michael R. Garrett; Alan Y. Deng

Previously we presented suggestive evidence from an F2 segregating population for an interaction on blood pressure (BP) between quantitative trait loci (QTL) on rat chromosomes (Chr) 2 and 10. To prove the existence of such an interaction, we developed congenic strains for Chr 2 and 10 by introgressing the low BP QTL alleles into the Dahl salt-sensitive (S) strain. A double congenic strain was also constructed with both the Chr 2 and 10 low BP QTL alleles on the S background. The four strains (S, Chr 2 congenic, Chr 10 congenic, and Chr 2/10 double congenic) were studied for BP response to increased salt intake. An analysis of variance showed significant main effects of Chr 2, Chr 10, and a significant interaction between Chr 2 and 10 on BP and heart weight (all P < 0.0001). The interaction accounted for 24 mmHg of BP and 79 mg of heart weight. Thus, the discovery and proof of epistatic interactions are clearly critical to understanding the genetics of blood pressure.


Journal of Clinical Investigation | 1996

Genetic mapping of two blood pressure quantitative trait loci on rat chromosome 1.

L Gu; H Dene; Alan Y. Deng; B Hoebee; M T Bihoreau; M James; John P. Rapp

A genetic map for rat chromosome 1 was constructed using 66 microsatellite markers typed on either or both of two populations derived from inbred Dahl salt-sensitive (S) rats: F2(LEW x S) n = 151, and F2(WKY x S) n = 159. These populations had been raised on a high salt (8% NaCl) diet. Systolic blood pressure and heart weight were found to be genetically linked to two separate regions on rat chromosome 1 in the F2(LEW x S) population. One region was centered around the anonymous SA locus and accounted for 24 mmHg of blood pressure. The other region was 55 cM from the SA locus centered around a cluster of cytochromes P450 loci, and accounted for 30 mmHg of blood pressure. Since blood pressure and heart weight were highly correlated these same regions were also linked to heart weight. These results were cross-specific as linkage of these chromosome 1 regions to blood pressure and heart weight was not observed in several other F2 populations derived by crossing S and other normotensive control strains. This is presumably due to different alleles and/or different genetic backgrounds in the various populations. The SA region of chromosome 1 was found to influence body weight in F2(LEW x S) rats. Combining the present data with our previously published data on the F2(LEW x S) population showed that four separate quantitative trait loci with additive effects accounted for 106 mmHg and 38% of the total variance of blood pressure and for 506 mg and 34% of the total variance of heart wt.


Biochemistry | 1976

Mutant forms of cytochrome P-450 controlling both 18- and 11beta-steroid hydroxylation in the rat.

John P. Rapp; Lewis K. Dahl

A reciprocal relationship between steroid 18- and 11beta-hydroxylase activities in the salt susceptible (S) and the salt resistant (R) strains of rats was previously shown to be controlled by a single genetic locus with two alleles and inheritance by co-dominance (Rapp, J. P., and Dahl, L. K. (1972), Endocrinology 90, 1435). The strain specific steroidogenic patterns, characterized by the relative magnitudes of 18- and 11beta-hydroxylase activities, were found to be determined by adrenal mitochondrial cytochrome P-450 particles. Carbon monoxide inhibition of 18- and 11beta-hydroxylation of deoxycorticosterone in these strains showed that the CO/O2 ratio causing 50% inhibition (i.e., Warburgs partition constant, K) was identical for 18- and 11beta-hydroxylation within a strain, but different for both 18- and 11 beta hydroxylation between strains. (K values were: S rats, 18-hydroxylation = 11.4 +/- 1.4; S rats, 11beta-hydroxylation = 11.0 +/- 1.2; R rats, 18-hydroxylation = 56.4 +/- 13.7; R rats, 11beta-hydroxylation = 46.7 +/- 11.7). This between-strain difference was unique for 18- and 11beta-hydroxylation; i.e., it was not seen with cholesterol side-chain cleavage or 21-hydroxylation. Moreover, the strain-specific K values for 18- and 11beta-hydroxylase and the strain-specific steroidogenic patterns due to the relative magnitudes of 18- and 11beta-hydroxylase activities segregated together in an F2 population. These data strongly suggest the same cytochrome P-450 is involved in both 18- and 11beta-hydroxylation and that this cytochrome is mutated between S and R rats. K values for the reaction corticosterone leads to 18-hydroxycorticosterone were different between S and R strains, indicating that the mutant cytochrome was also involved in this hydroxylation, but K values for the conversion corticosterone leads to aldosterone were not different between strains. This was interpreted to mean that each step in the sequence corticosterone leads to 18-hydroxycorticosterone leads to aldosterone was mediated by a different cytochrome, the K value for the second step being the lower and dominating the overall reaction. It was speculated that the second step could be a second hydroxylation at position 18 to yield 18,18-dihydroxycorticosterone which could be unstable and decompose into aldosterone and water.


Mammalian Genome | 1997

Linkage map and congenic strains to localize blood pressure QTL on rat Chromosome 10

Okaama I. Dukhanina; Howard Dene; Alan Y. Deng; Carol R. Choi; Barbara Hoebee; John P. Rapp

Our purposes were to develop a linkage map for rat Chromosome (Chr) 10, using chromosome-sorted DNA, and to construct congenic strains to localize blood pressure quantitative trait loci (QTL) on Chr 10 with the map. The linkage mapping panel consisted of three F2 populations totaling 418 rats. Thirty-two new and 29 known microsatellite markers were placed on the map, which spanned 88.9 centiMorgans (cM). The average distance between markers was 1.46 cM. No markers were separated by more than 6.8 cM. Four congenic strains were constructed by introgressing various segments of Chr 10 from the Milan normo-tensive strain (MNS) onto the background of the Dahl salt-sepsitive (S) strain. A blood pressure QTL with a strong effect on blood pressure (35-42 mm Hg) when expressed on the S background was localized to a 31-cM region between DIOMco6 and DIOMcol. The region does not include the locus for inducible nitric oxide synthase (Nos2), which had been considered to be a candidate locus for the QTL.


Journal of The American Society of Nephrology | 2003

Time-Course Genetic Analysis of Albuminuria in Dahl Salt-Sensitive Rats on Low-Salt Diet

Michael R. Garrett; Howard Dene; John P. Rapp

The Dahl salt-sensitive hypertensive (S) rat develops albuminuria early in life even on a low-salt diet. In contrast, the spontaneously hypertensive rat (SHR) is highly resistant to developing albuminuria despite elevated BP. An F(1) hybrid of S and SHR showed a low urinary albumin excretion (UAE) and low urinary protein excretion (UPE) similar to SHR, i.e., SHR was dominant. A genetic analysis was carried out on a large population (n = 276) obtained by backcrossing F(1) rats to the recessive S strain; the population was fed a low-salt diet. Genome scans done at 8, 12, and 16 wk of age yielded ten quantitative trait loci (QTL) for UAE and/or UPE with variable time-course patterns on nine rat chromosomes (RNO), i.e., RNO1, RNO2, RNO6, RNO8, RNO9, RNO10, RNO11, RNO13, and RNO19. There were two UPE QTL on RNO6. At most of the UAE and/or UPE QTL, the S allele was associated with increased excretion, except for one of the QTL on RNO6 and the QTL on RNO11, where the S allele caused decreased excretion. Only the UAE and UPE QTL on RNO10 co-localized with a BP QTL. The S allele on RNO10 caused higher BP and higher UAE. Two additional BP QTL were detected on RNO1 and RNO6. Most of the UAE and UPE QTL co-localized with QTL for kidney lesions characteristic of S rats. Multiple interactions were observed for UAE, many of which involved RNO2. In summary, UAE is highly polygenic and the majority of the QTL altering UAE do not co-localize with QTL for BP as evaluated by tail-cuff measurements of BP.


Hypertension | 1997

Congenic Strains for the Blood Pressure Quantitative Trait Locus on Rat Chromosome 2

Alan Y. Deng; Howard Dene; John P. Rapp

A quantitative trait locus (QTL) for blood pressure was previously detected by linkage analysis in a region of rat chromosome 2 using segregating populations derived from crosses of the Dahl salt-sensitive (Dahl S) rat with rats of the Wistar-Kyoto (WKY) strain or Milan normotensive strain (MNS). Two congenic strains, S.WKY-D2N35/Nep and S.MNS-Adh/D2Mit5, have been constructed by replacing a region of chromosome 2 of the Dahl S rat with the homologous region (ie, low blood pressure QTL allele) of either the WKY or MNS rat, respectively. Systolic pressures of congenic strains S.WKY-D2N35/Nep and S.MNS-Adh/D2Mit5 fed a 2% NaCl diet for 24 days were 44+/-4.6 and 29+/-4.5 mm Hg lower, respectively, than that of the comparably treated Dahl S rats. The differences between congenic and Dahl S rats in blood pressure were highly significant (P<.001) and were corroborated by significantly (P<.001) lower ratio of heart weight to body weight in the congenic strains compared with Dahl S rats. The data from two congenic strains combined unequivocally establish the existence of a blood pressure QTL on rat chromosome 2.


Mammalian Genome | 2003

Defining the blood pressure QTL on chromosome 7 in Dahl rats by a 177-kb congenic segment containing Cyp11b1.

Michael R. Garrett; John P. Rapp

Previously we reported that there is a blood pressure quantitative trait locus (QTL) on rat Chromosome (Chr) 7 seen when comparing Dahl salt-sensitive (S) rats and Dahl salt-resistant (R) rats. Evidence was also presented that this QTL was due to genetic variants in the adrenal steroidogenic enzyme 11β-hydroxylase (Cyp11b1). A series of congenic strains supported this contention. In the present work we have constructed a final congenic substrain that retains a blood pressure effect and that has an introgressed congenic segment which includes Cyp11b1 and is < 177 kb in size. None of the other genes in the congenic region (eight known genes) have known biological functions for influencing blood pressure. We believe that we have reached the limit of resolution for congenic analysis of a QTL in a rodent animal model, and we conclude that Cyp11b1 causes the observed QTL on rat Chr 7 in Dahl rats.

Collaboration


Dive into the John P. Rapp's collaboration.

Top Co-Authors

Avatar

Howard Dene

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Y. Deng

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bina Joe

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Dennis L. Sustarsic

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard P. McPARTLAND

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oksana I. Dukhanina

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge