John P. Rathjen
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John P. Rathjen.
Nature Reviews Genetics | 2010
Peter N. Dodds; John P. Rathjen
Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant–pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Antje Heese; Dagmar R. Hann; Selena Gimenez-Ibanez; Alexandra M. E. Jones; Kai He; Jia Li; Julian I. Schroeder; Scott C. Peck; John P. Rathjen
In pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), plant cell surface receptors sense potential microbial pathogens by recognizing elicitors called PAMPs. Although diverse PAMPs trigger PTI through distinct receptors, the resulting intracellular responses overlap extensively. Despite this, a common component(s) linking signal perception with transduction remains unknown. In this study, we identify SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)3/brassinosteroid-associated kinase (BAK)1, a receptor-like kinase previously implicated in hormone signaling, as a component of plant PTI. In Arabidopsis thaliana, AtSERK3/BAK1 rapidly enters an elicitor-dependent complex with FLAGELLIN SENSING 2 (FLS2), the receptor for the bacterial PAMP flagellin and its peptide derivative flg22. In the absence of AtSERK3/BAK1, early flg22-dependent responses are greatly reduced in both A. thaliana and Nicotiana benthamiana. Furthermore, N. benthamiana Serk3/Bak1 is required for full responses to unrelated PAMPs and, importantly, for restriction of bacterial and oomycete infections. Thus, SERK3/BAK1 appears to integrate diverse perception events into downstream PAMP responses, leading to immunity against a range of invading microbes.
Science | 1996
Steven R. Scofield; Christian M. Tobias; John P. Rathjen; Jeff H. Chang; Daniel T. Lavelle; Richard W. Michelmore; Brian J. Staskawicz
Transient expression of the Pseudomonas syringae avirulence gene avrPto in plant cells resulted in a Pto-dependent necrosis. The AvrPto avirulence protein was observed to interact directly with the Pto resistance protein in the yeast two-hybrid system. Mutations in the Pto and avrPto genes which reduce in vivo activity had parallel effects on association in the two-hybrid assay. These data suggest that during infection the pathogen delivers AvrPto into the plant host cell and that resistance is specified by direct interaction of Pto with AvrPto.
The EMBO Journal | 2003
Rui Lu; Isabelle Malcuit; Peter Moffett; M.T. Ruiz; Jack Peart; Ai-Jiuan Wu; John P. Rathjen; Abdelhafid Bendahmane; Louise Day; David C. Baulcombe
Virus‐induced gene silencing was used to assess the function of random Nicotiana benthamiana cDNAs in disease resistance. Out of 4992 cDNAs tested from a normalized library, there were 79 that suppressed a hypersensitive response (HR) associated with Pto‐mediated resistance against Pseudomonas syringae. However, only six of these clones blocked the Pto‐mediated suppression of P.syringae growth. The three clones giving the strongest loss of Pto resistance had inserts corresponding to HSP90 and also caused loss of Rx‐mediated resistance against potato virus X and N‐mediated tobacco mosaic virus resistance. The role of HSP90 as a cofactor of disease resistance is associated with stabilization of Rx protein levels and could be accounted for in part by SGT1 and other cofactors of disease resistance acting as co‐chaperones. This approach illustrates the potential benefits and limitations of RNA silencing in forward screens of gene function in plants.
Current Biology | 2009
Selena Gimenez-Ibanez; Dagmar R. Hann; Vardis Ntoukakis; Elena Petutschnig; Volker Lipka; John P. Rathjen
Plant innate immunity relies on a set of pattern recognition receptors (PRRs) that respond to ligands known as pathogen-associated molecular patterns (PAMPs). To overcome such immunity, phytopathogenic bacteria deliver virulence molecules called effector proteins into the plant cell that collectively promote pathogenesis. The vast majority of PRRs controlling PAMP-triggered immunity (PTI) and the mechanisms used by specific effectors to suppress these pathways are mostly unknown. Here, we show that the Arabidopsis LysM receptor kinase CERK1, which is critical for chitin elicitor signaling and resistance to fungal pathogens, plays an essential role in restricting bacterial growth on plants. This is supported by the fact that CERK1 is a target of the bacterial type III effector protein AvrPtoB, which blocks all defense responses through this receptor. AvrPtoB ubiquitinates the CERK1 kinase domain in vitro and targets CERK1 for degradation in vivo. We show that CERK1 is a determinant of bacterial immunity, but its contribution is overcome by bacteria expressing AvrPtoB. Our results reveal a new pathway for plant immunity against bacteria and a role for AvrPtoB E3-ligase activity in suppressing PTI.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Catherine Albrecht; Freddy Boutrot; Cécile Segonzac; Benjamin Schwessinger; Selena Gimenez-Ibanez; Delphine Chinchilla; John P. Rathjen; Sacco C. de Vries; Cyril Zipfel
Plants and animals use innate immunity as a first defense against pathogens, a costly yet necessary tradeoff between growth and immunity. In Arabidopsis, the regulatory leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1 combines with the LRR-RLKs FLS2 and EFR in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and the LRR-RLK BRI1 in brassinosteroid (BR)-mediated growth. Therefore, a potential tradeoff between these pathways mediated by BAK1 is often postulated. Here, we show a unidirectional inhibition of FLS2-mediated immune signaling by BR perception. Unexpectedly, this effect occurred downstream or independently of complex formation with BAK1 and associated downstream phosphorylation. Thus, BAK1 is not rate-limiting in these pathways. BRs also inhibited signaling triggered by the BAK1-independent recognition of the fungal PAMP chitin. Our results suggest a general mechanism operative in plants in which BR-mediated growth directly antagonizes innate immune signaling.
The Plant Cell | 2006
Tatiana S. Mucyn; Alfonso Clemente; Vasilios M.E. Andriotis; Alexi L. Balmuth; Giles E. D. Oldroyd; Brian J. Staskawicz; John P. Rathjen
Immunity in tomato (Solanum lycopersicum) to Pseudomonas syringae bacteria expressing the effector proteins AvrPto and AvrPtoB requires both Pto kinase and the NBARC-LRR (for nucleotide binding domain shared by Apaf-1, certain R gene products, and CED-4 fused to C-terminal leucine-rich repeats) protein Prf. Pto plays a direct role in effector recognition within the host cytoplasm, but the role of Prf is unknown. We show that Pto and Prf are coincident in the signal transduction pathway that controls ligand-independent signaling. Pto and Prf associate in a coregulatory interaction that requires Pto kinase activity and N-myristoylation for signaling. Pto interacts with a unique Prf N-terminal domain outside of the NBARC-LRR domain and resides in a high molecular weight recognition complex dependent on the presence of Prf. In this complex, both Pto and Prf contribute to specific recognition of AvrPtoB. The data suggest that the role of Pto is confined to the regulation of Prf and that the bacterial effectors have evolved to target this coregulatory molecular switch.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Freddy Boutrot; Cécile Segonzac; Katherine N. Chang; Hong Qiao; Joseph R. Ecker; Cyril Zipfel; John P. Rathjen
In plant innate immunity, the leucine-rich repeat receptor kinase FLS2 recognizes the bacterial pathogen-associated molecular pattern (PAMP) flagellin. The molecular mechanisms underlying PAMP perception are not fully understood. Here, we reveal that the gaseous phytohormone ethylene is an integral part of PAMP-triggered immunity. Plants mutated in the key ethylene-signaling protein EIN2 are impaired in all FLS2-mediated responses, correlating with reduced FLS2 transcription and protein accumulation. The EIN3 and EIN3-like transcription factors, which depend on EIN2 activity for their accumulation, directly control FLS2 expression. Our results reveal a direct role for ethylene in regulation of an innate immune receptor.
The EMBO Journal | 1999
John P. Rathjen; Jeff H. Chang; Brian J. Staskawicz; Richard W. Michelmore
Resistance in tomato to Pseudomonas syringae pv tomato (avrPto) is conferred by the gene Pto in a gene‐for‐gene relationship. A hypersensitive disease resistance response (HR) is elicited when Pto and avrPto are expressed experimentally within the same plant cell. The kinase capability of Pto was required for AvrPto‐dependent HR induction. Systematic mutagenesis of the activation segment of Pto kinase confirmed the homologous P+1 loop as an AvrPto‐binding determinant. Specific amino acid substitutions in this region led to constitutive induction of HR upon expression in the plant cell in the absence of AvrPto. Constitutively active Pto mutants required kinase capability for activity, and were unable to interact with proteins previously shown to bind to wild‐type Pto. The constitutive gain‐of‐function phenotype was dependent on a functional Prf gene, demonstrating activation of the cognate disease resistance pathway and precluding a role for Prf upstream of Pto.
Plant Physiology | 2011
Cécile Segonzac; Doreen Feike; Selena Gimenez-Ibanez; Dagmar R. Hann; Cyril Zipfel; John P. Rathjen
Our current understanding of pathogen-associated molecular pattern (PAMP)-triggered immunity signaling pathways in plants is limited due to the redundancy of several components or the lethality of mutants in Arabidopsis (Arabidopsis thaliana). To overcome this, we used a virus-induced gene silencing-based approach in combination with pharmacological studies to decipher links between early PAMP-triggered immunity events and their roles in immunity following PAMP perception in Nicotiana benthamiana. Two different calcium influx inhibitors suppressed the reactive oxygen species (ROS) burst: activation of the mitogen-activated protein kinases (MAPKs) and PAMP-induced gene expression. The calcium burst was unaffected in plants specifically silenced for components involved in ROS generation or for MAPKs activated by PAMP treatment. Importantly, the ROS burst still occurred in plants silenced for the two major defense-associated MAPK genes NbSIPK (for salicylic acid-induced protein kinase) and NbWIPK (for wound-induced protein kinase) or for both genes simultaneously, demonstrating that these MAPKs are dispensable for ROS production. We further show that NbSIPK silencing is sufficient to prevent PAMP-induced gene expression but that both MAPKs are required for bacterial immunity against two virulent strains of Pseudomonas syringae and their respective nonpathogenic mutants. These results suggest that the PAMP-triggered calcium burst is upstream of separate signaling branches, one leading to MAPK activation and then gene expression and the other to ROS production. In addition, this study highlights the essential roles of NbSIPK and NbWIPK in antibacterial immunity. Unexpectedly, negative regulatory mechanisms controlling the intensity of the PAMP-triggered calcium and ROS bursts were also revealed by this work.
Collaboration
Dive into the John P. Rathjen's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs