Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Thomson is active.

Publication


Featured researches published by John P. Thomson.


Nature | 2010

CpG islands influence chromatin structure via the CpG-binding protein Cfp1

John P. Thomson; Peter J. Skene; Jim Selfridge; Thomas Clouaire; Jacky Guy; Shaun Webb; Alastair Kerr; Aimée M. Deaton; Robert Andrews; Keith D. James; Daniel J. Turner; Robert S. Illingworth; Adrian Bird

CpG islands (CGIs) are prominent in the mammalian genome owing to their GC-rich base composition and high density of CpG dinucleotides. Most human gene promoters are embedded within CGIs that lack DNA methylation and coincide with sites of histone H3 lysine 4 trimethylation (H3K4me3), irrespective of transcriptional activity. In spite of these intriguing correlations, the functional significance of non-methylated CGI sequences with respect to chromatin structure and transcription is unknown. By performing a search for proteins that are common to all CGIs, here we show high enrichment for Cfp1, which selectively binds to non-methylated CpGs in vitro. Chromatin immunoprecipitation of a mono-allelically methylated CGI confirmed that Cfp1 specifically associates with non-methylated CpG sites in vivo. High throughput sequencing of Cfp1-bound chromatin identified a notable concordance with non-methylated CGIs and sites of H3K4me3 in the mouse brain. Levels of H3K4me3 at CGIs were markedly reduced in Cfp1-depleted cells, consistent with the finding that Cfp1 associates with the H3K4 methyltransferase Setd1 (refs 7, 8). To test whether non-methylated CpG-dense sequences are sufficient to establish domains of H3K4me3, we analysed artificial CpG clusters that were integrated into the mouse genome. Despite the absence of promoters, the insertions recruited Cfp1 and created new peaks of H3K4me3. The data indicate that a primary function of non-methylated CGIs is to genetically influence the local chromatin modification state by interaction with Cfp1 and perhaps other CpG-binding proteins.


Earth and Planetary Science Letters | 1995

Authigenic cadmium enrichments in suboxic sediments: Precipitation and postdepositional mobility

Yair Rosenthal; Phoebe J. Lam; Edward A. Boyle; John P. Thomson

The postdepositional mobility of Cd and U has been investigated in North Atlantic turbidites in order to validate their utility as proxies of paleo-organic carbon fluxes. In this region pelagic sediments are interspersed with relatively organic-rich turbidites. Following instantaneous emplacement of turbidite units an oxidation front progressively migrated downwards into the suboxic turbidite, thereby leading to redistribution of authigenic phases according to their affinity to different redox conditions. Authigenic Cd concentrations show a large peak at the redox boundary and are significantly lower in the oxidized portion than in the deeper, unoxidized part of the turbidite. This distribution indicates that Cd has been continuously remobilized by the oxidation front thereby suggesting high sensitivity of the Cd species to the redox state and an efficient immobilization mechanism for Cd under reducing conditions. We propose the precipitation of CdS as a plausible mechanism for removal of Cd in reducing sediments, rather than adsorption onto mineral surfaces. This proposal is consistent with porewater data indicating diffusion of Cd toward, and uptake by, suboxic sediments. Solubility calculations suggest that precipitation of CdS may occur in suboxic sediments in the presence of trace levels of H2S (below routine detection limits). There is no evidence for release of Cd or U back into seawater upon oxidation of reducing sediments. The strong coupling between precipitation of authigenic Cd and U and the early diagenetic degradation of organic carbon offers the potential of reconstructing paleo-productivity using records of Cd and U. However, postdepositional redistribution of authigenic Cd and U may significantly alter records of authigenic Cd and U thereby rendering paleo-productivity reconstructions uncertain. We propose that the(Cd/U)authigenic ratio may provide a qualitative indicator to assess the relative role of steady-state incorporation relative to transient ‘burn-down’ enrichments.


Genome Biology | 2015

Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems

Colm E. Nestor; Raffaele Ottaviano; Diana Reinhardt; Hazel A. Cruickshanks; Heidi K. Mjoseng; Rhoanne C. McPherson; Antonio Lentini; John P. Thomson; Donncha S. Dunican; Sari Pennings; Stephen M. Anderton; Mikael Benson; Richard R. Meehan

BackgroundThe DNA methylation profiles of mammalian cell lines differ from those of the primary tissues from which they were derived, exhibiting increasing divergence from the in vivo methylation profile with extended time in culture. Few studies have directly examined the initial epigenetic and transcriptional consequences of adaptation of primary mammalian cells to culture, and the potential mechanisms through which this epigenetic dysregulation occurs is unknown.ResultsWe demonstrate that adaptation of mouse embryonic fibroblasts to cell culture results in a rapid reprogramming of epigenetic and transcriptional states. We observed global 5-hydroxymethylcytosine (5hmC) erasure within three days of culture initiation. Loss of genic 5hmC was independent of global 5-methylcytosine (5mC) levels and could be partially rescued by addition of vitamin C. Significantly, 5hmC loss was not linked to concomitant changes in transcription. Discrete promoter-specific gains of 5mC were also observed within seven days of culture initiation. Against this background of global 5hmC loss we identified a handful of developmentally important genes that maintained their 5hmC profile in culture, including the imprinted loci Gnas and H19. Similar outcomes were identified in the adaption of CD4+ T cells to culture.ConclusionsWe report a dramatic and novel consequence of adaptation of mammalian cells to culture in which global loss of 5hmC occurs, suggesting rapid concomitant loss of methylcytosine dioxygenase activity. The observed epigenetic and transcriptional re-programming occurs much earlier than previously assumed, and has significant implications for the use of cell lines as faithful mimics of in vivo epigenetic and physiological processes.


Nucleic Acids Research | 2013

Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver

John P. Thomson; Jennifer M. Hunter; Harri Lempiäinen; Arne Müller; Rémi Terranova; Jonathan G. Moggs; Richard R. Meehan

Aberrant DNA methylation is a common feature of neoplastic lesions, and early detection of such changes may provide powerful mechanistic insights and biomarkers for carcinogenesis. Here, we investigate dynamic changes in the mouse liver DNA methylome associated with short (1 day) and prolonged (7, 28 and 91 days) exposure to the rodent liver non-genotoxic carcinogen, phenobarbital (PB). We find that the distribution of 5mC/5hmC is highly consistent between untreated individuals of a similar age; yet, changes during liver maturation in a transcriptionally dependent manner. Following drug treatment, we identify and validate a series of differentially methylated or hydroxymethylated regions: exposure results in staged transcriptional responses with distinct kinetic profiles that strongly correlate with promoter proximal region 5hmC levels. Furthermore, reciprocal changes for both 5mC and 5hmC in response to PB suggest that active demethylation may be taking place at each set of these loci via a 5hmC intermediate. Finally, we identify potential early biomarkers for non-genotoxic carcinogenesis, including several genes aberrantly expressed in liver cancer. Our work suggests that 5hmC profiling can be used as an indicator of cell states during organ maturation and drug-induced responses and provides novel epigenetic signatures for non-genotoxic carcinogen exposure.


Genome Biology | 2012

Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome

John P. Thomson; Harri Lempiäinen; James Alexander Hackett; Colm E. Nestor; Arne Müller; Federico Bolognani; Dirk Schübeler; Rémi Terranova; Diana Reinhardt; Jonathan G. Moggs; Richard R. Meehan

BackgroundInduction and promotion of liver cancer by exposure to non-genotoxic carcinogens coincides with epigenetic perturbations, including specific changes in DNA methylation. Here we investigate the genome-wide dynamics of 5-hydroxymethylcytosine (5hmC) as a likely intermediate of 5-methylcytosine (5mC) demethylation in a DNA methylation reprogramming pathway. We use a rodent model of non-genotoxic carcinogen exposure using the drug phenobarbital.ResultsExposure to phenobarbital results in dynamic and reciprocal changes to the 5mC/5hmC patterns over the promoter regions of a cohort of genes that are transcriptionally upregulated. This reprogramming of 5mC/5hmC coincides with characteristic changes in the histone marks H3K4me2, H3K27me3 and H3K36me3. Quantitative analysis of phenobarbital-induced genes that are involved in xenobiotic metabolism reveals that both DNA modifications are lost at the transcription start site, while there is a reciprocal relationship between increasing levels of 5hmC and loss of 5mC at regions immediately adjacent to core promoters.ConclusionsCollectively, these experiments support the hypothesis that 5hmC is a potential intermediate in a demethylation pathway and reveal precise perturbations of the mouse liver DNA methylome and hydroxymethylome upon exposure to a rodent hepatocarcinogen.


Toxicological Sciences | 2013

Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion.

Harri Lempiäinen; Philippe Couttet; Federico Bolognani; Arne Müller; Valerie Dubost; Raphaëlle Luisier; Alberto del Rio-Espinola; Veronique Vitry; Elif B. Unterberger; John P. Thomson; Fridolin Treindl; Ute Metzger; Clemens Wrzodek; Florian Hahne; Tulipan Zollinger; Sarah Brasa; Magdalena Kalteis; M. Marcellin; Fanny Giudicelli; Albert Braeuning; Laurent Morawiec; Natasa Zamurovic; Ulrich Längle; Nico Scheer; Dirk Schübeler; Jay I. Goodman; Salah-Dine Chibout; Jennifer Marlowe; Diethilde Theil; David J. Heard

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.


Toxicological Sciences | 2014

Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors

Raphaëlle Luisier; Harri Lempiäinen; Nina Scherbichler; Albert Braeuning; Miriam Geissler; Valerie Dubost; Arne Müller; Nico Scheer; Salah-Dine Chibout; Hisanori Hara; Frank Picard; Diethilde Theil; Philippe Couttet; Antonio Vitobello; Olivier Grenet; Bettina Grasl-Kraupp; Heidrun Ellinger-Ziegelbauer; John P. Thomson; Richard R. Meehan; Clifford R. Elcombe; Colin J. Henderson; C. Roland Wolf; Michael Schwarz; Pierre Moulin; Rémi Terranova; Jonathan G. Moggs

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2000

Near-bottom particle flux in the abyssal northeast Atlantic

Richard S. Lampitt; Philip P. Newton; Timothy D. Jickells; John P. Thomson; P. King

During a 17-month study at a site on the Porcupine Abyssal Plain of the northeast Atlantic (approx. 48°N 20°W), the downward flux of particulate material within and above the benthic nepheloid layer (BNL) was measured using sediment traps 1455 m above bottom (mab) (3100 m depth) and 90 mab (4465 m depth). Flux at 90 mab is usually higher than the primary flux at 3100 m depth, and this enhancement is especially pronounced during the winter. The additional material found in the near-bottom trap comprises recently deposited resuspended material (rebound flux), but with an admixture of refractory sediment. It is unlikely that scavenging of either BNL particles or dissolved material contributes greatly to the near-bottom flux. Fluxes of metal tracers (232Th and Al) and cyanobacteria into traps were used to examine the process of resuspension. The ratio of tracer flux at 90 mab to that at 3100 m depth was taken as a measure of the strength of the resuspension process (the resuspension factor RF) and reflects clearly the enhanced resuspension in winter. This seasonal variation appears to be related to both the magnitude of near-bottom currents and to the wave height at the surface 40 days before. It is also possible that recently deposited material forms a partly cohesive blanket on the sediment surface that restricts resuspension to the benthic boundary layer.


Nature | 2017

Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration

Alexander Raven; Wei-Yu Lu; Tak Yung Man; Sofia Ferreira-Gonzalez; Eoghan O’Duibhir; Benjamin J. Dwyer; John P. Thomson; Richard R. Meehan; Roman L. Bogorad; Victor Koteliansky; Yuri Kotelevtsev; Charles ffrench-Constant; Luke Boulter; Stuart J. Forbes

After liver injury, regeneration occurs through self-replication of hepatocytes. In severe liver injury, hepatocyte proliferation is impaired—a feature of human chronic liver disease. It is unclear whether other liver cell types can regenerate hepatocytes. Here we use two independent systems to impair hepatocyte proliferation during liver injury to evaluate the contribution of non-hepatocytes to parenchymal regeneration. First, loss of β1-integrin in hepatocytes with liver injury triggered a ductular reaction of cholangiocyte origin, with approximately 25% of hepatocytes being derived from a non-hepatocyte origin. Second, cholangiocytes were lineage traced with concurrent inhibition of hepatocyte proliferation by β1-integrin knockdown or p21 overexpression, resulting in the significant emergence of cholangiocyte-derived hepatocytes. We describe a model of combined liver injury and inhibition of hepatocyte proliferation that causes physiologically significant levels of regeneration of functional hepatocytes from biliary cells.


Nucleic Acids Research | 2013

Comparative analysis of affinity-based 5-hydroxymethylation enrichment techniques

John P. Thomson; Jennifer M. Hunter; Colm E. Nestor; Donncha S. Dunican; Rémi Terranova; Jonathan G. Moggs; Richard R. Meehan

The epigenetic modification of 5-hydroxymethylcytosine (5hmC) is receiving great attention due to its potential role in DNA methylation reprogramming and as a cell state identifier. Given this interest, it is important to identify reliable and cost-effective methods for the enrichment of 5hmC marked DNA for downstream analysis. We tested three commonly used affinity-based enrichment techniques; (i) antibody, (ii) chemical capture and (iii) protein affinity enrichment and assessed their ability to accurately and reproducibly report 5hmC profiles in mouse tissues containing high (brain) and lower (liver) levels of 5hmC. The protein-affinity technique is a poor reporter of 5hmC profiles, delivering 5hmC patterns that are incompatible with other methods. Both antibody and chemical capture-based techniques generate highly similar genome-wide patterns for 5hmC, which are independently validated by standard quantitative PCR (qPCR) and glucosyl-sensitive restriction enzyme digestion (gRES-qPCR). Both antibody and chemical capture generated profiles reproducibly link to unique chromatin modification profiles associated with 5hmC. However, there appears to be a slight bias of the antibody to bind to regions of DNA rich in simple repeats. Ultimately, the increased specificity observed with chemical capture-based approaches makes this an attractive method for the analysis of locus-specific or genome-wide patterns of 5hmC.

Collaboration


Dive into the John P. Thomson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus Lyall

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge